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What, If Anything, Is the Title About?

• Wood 1957, What, If Anything, Is a Rabbit?

– Do rabbits and their relatives form a distinct order, not 
closely related to rodents?

• Gould 1983, What, If Anything, Is a Zebra?

– Do the three species of zebras form a single evolutionary 
unit?

• Jenkins 2017, What, If Anything, Is Systems 
Engineering?

– What kinds of problems do systems engineers work on?

– How do systems engineers work?
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I. What Kinds of Problems Do Systems Engineers Work On?
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Systems Engineering Problems

• There’s no point in trying to develop a rigorous 
taxonomy of problem types

– Real problems don’t fit neatly into categories

• There are differences in emphasis, however

• I will illustrate some differences with four examples 
from one of the greatest (and least known) systems 
engineering successes in human history

– It saves millions of lives per year

– It cost less than $300M US total

– It was achieved through a combination of science, 
engineering, politics, and psychology, assisted by 
humanitarianism, cleverness, guile,… and luck

• The people who did it didn’t consider themselves 
systems engineers, but I do

• What was it?
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Eradication of Smallpox

• Inoculation with smallpox, known to provide some 
benefits, practiced in 18th century and before

• Smallpox vaccine (from cowpox) reported 1797

• Many local and regional eradication efforts after that

• Eradication achieved in US and industrialized Europe by 
early 20th Century

– Nevertheless: 300-500 million deaths in 20th Century

• Coordinated global effort begin in 1959 with adoption of 
WHA11.55 by the World Health Assembly

• Slow progress until 1966 with formation of the Smallpox 
Eradication Unit by the World Health Organization

• By 1975 smallpox is endemic only in the Horn of Africa

• Last naturally-occurring indigenous case worldwide was 
in Somalia in 1977

• Eradication officially declared in 1980
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Problem I: Create a Machine

• Smallpox vaccine is a liquid, administered via scratches 
in the skin

• We need a machine to deliver the proper dose

– We need at least thousands of units 

– It must function reliably under third-world conditions

– It must be operable by workers with minimal training

– It must not infect patients with other diseases

• A variety of solutions employed, with varying success, 
until the 1960s

• In 1966, American microbiologist Benjamin Rubin 
developed the bifurcated needle

– one of the greatest machines in human history
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The Bifurcated Needle

• No moving parts

• $0.005 each to produce

• Multiple-decade lifetime

• No credible intrinsic 
failure modes

• Meters dose by capillary 
action

• Very low vaccine waste

• Sterilized after each use

– low risk of infection

• Delivered several 
hundred million doses

• Critical component of 
eventual mission success
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More on Creating a Machine

• Creating a machine is a canonical systems engineering 
problem

– but probably thought of as the canonical problem too often

• Understanding what the machine (or system) has to do 
(i.e., knowing its stakeholders and their concerns) is 
the heart of the systems engineering process

• This understanding is often gained through an extended 
period of engagement with stakeholders, who

– may not be able to articulate their concerns well

– may be unaware of other stakeholders and concerns

– may not understand how their concerns conflict with 
others

• The rest is merely engineering design

– The remaining design problem may be extraordinarily 
challenging (e.g., Apollo spacecraft)

Future Directions in ED & SE2017-01-20 8



National Aeronautics and 

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California
Problem II: Create a Capability

• It’s not enough to have the means to vaccinate

• We need to deploy and maintain

– trained workers (thousands)

– needles (millions) and sterilization gear

– vaccine doses (hundreds of millions)

– educational materials (hundreds of millions)

• We need an operational infrastructure to transport

– resources and directions to the field

– status and requests from the field

• We have to coordinate with

– local leaders, diplomats, health officials

• The operational capability must persist for decades

• A failure in the field (e.g., infection) can damage 
confidence in the entire program
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More on Creating a Capability

• For a long-lived program, the nature of the operational 
capability may change radically

• Most of the vaccine in the early years was provided by 
the United States and the Soviet Union

• By 1973 80% of all vaccine was produced in developing 
countries

• This is a good example of a higher-order effect

• Vaccine is vaccine, except

– Contamination or ineffectiveness risk health, lives, and 
program success

• arguing for centralized production

– Local production may enhance program participation and 
strengthen local public health infrastructure in general

• arguing for distributed production

• Proper systems engineering accounts for these 
secondary effects, sometimes exploiting them for gain
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Problem III: Create a Strategy

• It’s not enough to have a capability that can be fielded

• We have to have a strategy for where and when to field

– Where we can be most effective?

– Where the need is greatest?

– Those often don’t overlap

• There are many immutable environmental constraints

– Somalia was embroiled in civil war 1974-1991

– Somalia and Ethiopia were at war 1977-1978

– Poverty creates its own complications

• Information from the field may be unreliable

– Developing nations trying to attract investment were 
reluctant to report outbreaks

• Costs and direct benefits are not co-located

• A great exercise in decision-making under uncertainty

– Little of the uncertainty is statistical in nature….

Future Directions in ED & SE2017-01-20 11



National Aeronautics and 

Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California
More on Creating a Strategy

• Smallpox has some specific properties that helped to 
make it the first (and so far, only) endemic human 
disease to be eradicated

– It spreads only by direct human-to-human contact

– Average incubation period is 12 days

– Victims are not contagious during incubation

– There is time to break the chain after infection

• These facts played into a major re-thinking of strategy 
in 1966

– Since 1958 the strategy had been worldwide mass 
vaccination to achieve herd immunity

– New strategy was based on surveillance and rapid-
response containment

– This required reworking much of the field capability

• Original strategy would probably not have succeeded

• New strategy led directly to mission success
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Problem IV: Create a Culture

• The world’s position on smallpox eradication went 
through distinct phases:

– 1800: A Utopian vision

– 1958: We’re in favor of it

– 1966: Let’s put some muscle behind it and finish it off

– 1979: We seem to have done it

– 1980: We did it!

• This progression was not by accident; the culture for 
smallpox eradication was the result of sustained effort 
of key leaders, including D. A. Henderson

– in my opinion, the most unsung hero in world history

• There were numerous close calls with total failure

• Solving such problems involves everything we know: 
science, psychology, economics, politics, culture, etc.

• Is it Systems Engineering? I don’t see why not.
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More on Creating a Culture

• All known smallpox stocks are currently housed at the 
US Center for Disease Control and Prevention and the 
Russian State Research Center of Virology and 
Biotechnology

• The World Health Organization has recommended 
destruction of the remaining virus since 1986

• Resistance from the US and Russia has prevented 
destruction to the present day

– Destruction would undoubtedly reduce risk of accidental 
reintroduction

– Experts agree no public health purpose is served by 
retention of virus stocks

– and yet, virus stocks are retained

• The Culture Creation challenge continues

– This kind of problem does not yield to pure technical 
analysis and optimization
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How Do Systems Engineers Work?

• Before talking about how Systems Engineers work, let’s 
think about Engineers in general work

• Engineers do two complementary things:

– they describe actual and imagined states of the world

• actual states are facts

• imagined states are designs and consequences

– they analyze these descriptions

• What are the consequences of a specified design?

• What designs have a specified set of consequences?

• Engineering analysis is distinguished by its reliance on 
science and mathematics to achieve rigor

• Engineering rigor manifests in three dimensions:

– language

– abstraction

– automation
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Language, Abstraction, Automation
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Language

• We can’t analyze what we can’t describe

• We can’t describe precisely without precise language

• Electrical engineering, for example, defines precise 
descriptive terms like resistor, capacitor, filter, 
rectifier, amplifier, etc.

– and taxonomic relationships, e.g., low-pass filter 
specializes filter

• From these terms we can compose circuit descriptions 
in an analysis language like SPICE netlist format

– and then SPICE can tell us how the circuits behave

• Precise languages generally manifest three things:

– vocabulary

– syntax: rules for constructing sentences

– semantics: meaning in the real world

• Engineering semantics are about analysis
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Abstraction

• Abstractions are the key to analysis

• For example, an RC filter can be modeled by a linear 
ordinary differential equation

– The equation is an abstraction in that it is a purely 
mathematical description of idealized behavior

– We can perform operations on this abstraction; in fact we 
can solve it

– The solution is a useful approximation of the actual
behavior of the filter

• Mathematical analysis is a hallmark of engineering

– Everything else is poetry or marketing or ….

• The scope of applicable math has enlarged over time

– No longer just calculus, linear algebra and probability

– Now formal logic, graph theory, abstract algebra, etc.

– For example, error-correcting codes employ algebra 
proudly thought to be useless until the 20th century
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Language and Abstraction

• What is a capacitor?

– Is it necessarily a discrete component?

• A better definition: something that exhibits capacitance

• And what is capacitance?

– A particular analytical relationship between voltage and 
current, represented by an ordinary differential equation

• This is a key linkage: language concepts are 
fundamentally tied to analysis via abstraction

• This is generally true throughout engineering: our 
language allows us to describe things in such a way 
that analytical consequences directly follow

– “directly” may involve work but the implication is direct

• Abstractions shape language and vice versa

– e.g., Modelica is all about differential-algebraic equations
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Automation

• Automation is critical for engineering because it 
preserves rigor: scrupulous adherence to the highest 
standards for the conduct of work

– Machines don’t cut corners

• Automation has its own abstractions (e.g., algorithms, 
data structures)

• These abstractions can be mapped to the abstractions 
of engineering analysis

– transitive closure maps to root cause analysis

• Automation is fundamental to modern engineering 
because

– Well-designed languages are amenable to machine parsing

– Many useful mathematical abstractions and related 
analyses are implemented in software libraries

– Derivation of consequences of design can be automated

– Design synthesis can be automated
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Is Systems Engineering

Really Engineering?

• Systems engineers describe and analyze, but how well 
do we do it?

• Do we use precise language?

• Do we employ abstractions to empower analysis?

• Do we automate effectively?

• How can we do better?
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Systems Engineering Language

• It’s fair to say that systems engineering employs 
distinct concepts: component, function, interface, 
requirement, risk, etc.

• It’s also fair to say that we use some words frequently 
without being very clear about meaning

– system vs subsystem is subtle to pin down

• We lack

– agreement on names and definitions for these concepts

• I call it component, what do you call it?

– agreement on names and definitions for relationships

• What’s the name of the relationship between a component and 
a function? Between a component and an interface? Between a 
requirement and a component?

– agreement on names and definitions for properties

• estimated mass, for example, is not really a property of a 
component, it’s a constraint on the component’s mass
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How Can We Do Better?

• First and foremost, recognize that there is well-
established field of theory, practice, and technology 
dedicated to precise representation of knowledge

– called (obviously) Knowledge Representation

• Use the tools of Knowledge Representation and the 
Semantic Web to build communities of consensus 
around systems engineering language usage

– captured in formal ontologies

• Incorporate this consensus into, not just tools and 
software, but human language

– We should talk to each other using our language

• Incorporate this consensus into tools and software

– Particularly, SysML

• Reject ambiguity from our practices

– Being precise about uncertainty is good

– Being ambiguous about anything is not
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Systems Engineering Abstractions

• It’s fair to say that systems engineering doesn’t yet 
recognize a fundamental set of abstractions

– Unlike, say, control theory, which is strongly founded on 
functional analysis

• This is partly due to the fact that the scope of systems 
engineering is very broad (from machines to culture)

• The breadth of the subject matter can suggest to us 
that there is something fundamental to systems 
engineering about capturing a diverse set of facts and 
relating diverse concepts to each other

• What abstractions empower this activity?
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How Can We Do Better?

• Recognize that graph theory is the mathematical study 
of graphs, which represent pairwise relations between 
objects

• Knowledge representation theory makes heavy use of 
graphs

• We can use graph theory to structure and organize the 
facts (language assertions) about the objects of our 
design and analysis

– We can reason about whether the resulting graph is well-
formed according to the rules of our language

– We can reason about all kinds and degrees of relatedness

• e.g., What requirements does this requirement directly refine?

• Indirectly?

• Well-known graph algorithms have direct application

– connected components, transitive closure, topological sort
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Example: Knowledge as a Graph
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Systems Engineering Automation

• In the lifetime of the Systems Engineering discipline, 
computing has gone from a scarce, precious resource to 
a commodity sold in bulk

• It doesn’t seem that the discipline has taken this fact 
into account

• How are our methods today different from those of 
1970?

• Fortunately, well-designed languages and abstractions 
lend themselves directly to automation

– machine parsing

– graph analysis

– logical reasoning

– query answering

– search

– planning and scheduling
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Summary

• Systems Engineering has as its subject matter 
everything required to accomplish something difficult

– from designing machines to changing culture

• Systems Engineers, like all engineers

– describe states of the world

– associate design with consequences through analysis

• Rigor in description and analysis makes use of

– precise language with rules and meaning

– mathematical abstractions

– automation

• Graph theory is fundamentally empowering for all three
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