JPL’s Starshade Technology Activities
Recent Progress, Needs and Opportunities

December 01, 2016

Doug Lisman
Mechanical Architecture and Key Requirements
(26-m total dia. and 26% bandpass at 37 Mm separation gives 72 mas IWA)

Petal Subsystem (Qty. 26, 8-m long)
Stiff lattice structure with low CTE lateral members, pop-up ribs for out of plane stiffness, and optical edges to limit solar scatter.

Inner Disk Subsystem (IDS. 10-m dia.)
Stiff perimeter truss with bicycle-like spokes, central hub and co-deployed opaque optical shield.

Target Star

Spacecraft Bus
with fixed solar array and prop tanks inside hub

Sun

54° - 83°

WFIRST Field of regard

Petal Launch Restraint & Unfurler Subsystem (PLUS)
(not shown)

No edge contact during launch and unfurling

34-m starshade shown: 20-m disk, 7-m petals

Control solar edge scatter to ≤ 10 µm-% (edge radius x reflectivity)

Control starshade position to ≤ ± 1 m lateral ≤ ± 250 km axial

Control petal positions to ≤ ± 0.5 mm in-plane ≤ ± 1 cm out of plane

Control petal shape to ≤ ± 200 µm envelope

Control petal positions to ≤ ± 0.5 mm in-plane ≤ ± 1 cm out of plane

Control petal shape to ≤ ± 200 µm envelope

Sense axial position ≤ ± 1 km

Sense lateral position ≤ ± 24 cm

Fine Sensing ≤ ± 1/10 pupil dia.

Intermediate Acquisition

Coronagraph

RF Transponder with 2-way ranging

Tertiary Assy

LOWFS*

Imager

Spectrometer

*LOWFS = Low Order Wavefront Sensor
Deployment Scheme

2-stage deployment

Petals & IDS are stiff by themselves and can be performance tested early.

System Animation + Prototype disk deploy video

Petal Unfurl video
Key Architecture Features

- Stiff deployed system gives repeatability/accuracy and enables ground testing with gravity compensation fixtures of manageable complexity

- Stiff deployed subsystems (petal and inner disk) give early performance confidence

- 26% Bandpass to match CGI capability and reduce starshade size

- Proportionally long petals (61% of total dia.) gives 72 mas IWA with 26-m starshade to match the 34-m Exo-S performance with 41% petal proportion and 34% bandpass

- Guide on out of band starlight and a starshade laser beacon
General Technology Development Need

Establish technology readiness (TRL-5) critical to:
- garner a Decadal mission recommendation,
- pass KDP-A and enter Phase A with limited risk,
- on a path to WFIRST rendezvous.

**TRL-5 Working Definition**

Verify critical performance in relevant environments of high-fidelity full-scale* subsystem prototypes by test or analysis with validated models and demonstrate an understanding of all critical interfaces**.

* No scaling activity saves schedule and reduces risk.

** Mechanical subsystem prototypes include PLUS.
Recent Technical Progress - Mechanical

Established 5-m dia. IDS optical shield testbed to:
Develop truss closeouts, incorporate carbon rods at all OS hinge lines, demo thin-film solar cells.

Established Petal Unfurler Testbed to:
Develop PLUS proof of concept

Thin-film solar cell demo for SEP

Petal shape prototype

10-m dia. IDS prototype

2-m dia. IDS optical shield testbed
Recent Technical Progress – Solar Glint
(Limit to below exo-Zodiacal Light)

- NGAS & JPL have explored two separate approaches (shown below) and an effort is now underway to revisit the full spectrum of options. Other progress: durability, dust sensitivity, mech. integration, metrology facility etc.

**Dark & Diffuse (NGAS), e.g.:**
*Enbio CoBlast Solar Black on Ti*

**Sharp & Specular (JPL), e.g.:**
*Chemically etched amorphous metal*

Select stealth edge
Segments reduce flux by 10X
Recent Technical Progress – Lateral position sensing

- CGI-LOWFS senses lateral position with out of band starlight at relatively high flux
- Accuracy of ± 24 cm 3-sigma corresponds to a shear of ± 1/10th pupil diameter
- Optical modeling is straightforward and leverages the WFIRST pupil model
  - Measurements are match filtered against a catalogue of images
- Model validation at flight Fresnel numbers is underway in a low contrast testbed
- Will also feed sensor simulations into acquisition and control algorithms
The opportunity is to advance technology readiness as needed to achieve:

- Decadal mission recommendation
- Phase A start with limited risk
- WFIRST rendezvous launch readiness