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Full-Spectrum Solar / Thermal Cycle Power Systems 

 Hybrid Concentrated Solar PV/Thermodynamic Cycle Power Systems to Achieve High Exergy Efficiency
 Some System Concepts Implement Wave-Splitting Design Approaches 

 Optimum -split @ ~1.7 eV – 1.11 eV (0.73 m -1.12 m) 

Cell Thermalized Energy Also 

Absorbed in Thermal Cycle System

 Technical Challenges

 High Temperature PV cells

 Compact Stirling cycles, Brayton 

cycles, Organic Rankine cycles

 Wavelength splitting (efficiency)

 Thermal interfaces

 High-Temperature thermal energy 

storage  (<$15/kWth)

 Cost 

 LCOE ~ $0.06/kWhr is high bar
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FSPOT-X System Description & Function

 Hybrid Photovoltaic (PV) / Thermoacoustic Power Conversion (TAPC) System Incorporating Thermal Energy 
Storage (TES)

 Photovoltaics Captures & Converts Energy @ Low Wavelengths

 Reflux Boiling System for Efficient, Low Exergy Heat Transfer

 TAPC Captures & Converts Thermal Energy @ Longer Wavelengths

 TES Integrated into Reflux Boiling System To Store Thermal Energy

 Benefits

 Increased System-Level Performance (Power & Efficiency)

 Increased System Dispatchability – Longer Off-Sun Operation

 Leads to Lower LCOE Costs

 Goals

 > 10 kWe TA engine at 300-350 C and 37 C reject temperature at > 25% TAPC efficiency

 High-temperature PV efficiency >20% (@ 350oC)

 Overall system efficiency ~44%

 Reflux Boiler / TES is Critical to System Operation

 Low Exergy Thermal Transport into TAPC

 Low Exergy Thermal Transport Into/Out of TES



Reflux Boiler Design
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TAPC

15-minutes storage, 10 kWe System
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Initial TES Design Challenges & Material Options – 10 kWe System

Design Challenge Impact Design Approaches

Low Internal Thermal Conductance Controls Thermal Transport to TAPC and Thermal Energy 

Storage Rates

• Microchannel Designs

• Micro-encapsulation 

• Heat pipe enhancement

• Internal design optimization

• Internal Testing to Validate Performance

Temperature Matching with PV/TAPC 

Requirements

Operating Temperature Controls PV/TAPC Performance, 

Selected Temperature Determined by Overall System 

Performance Optimization

• Several TES materials across wide temperature range

• Cascaded or staged design 

• NaCl–KCl–MgCl2 -- ~390°C

TES Containment Integration & 

Thermal Interfaces & Isothermal 

Design 

Reduced Thermal Transport to TAPC and Thermal Energy 

Storage Rates, Eliminate Corrosion-Induced Failures

• Heat pipe enhanced

• Naphthalene or Dowtherm A Working Fluids

• State-of-the-art TES 
Materials (right and 
following next chart)

• Innovative TES Spheres in 
“Pebble Bed” Configuration

TTES=306°CTTES=335°C TTES=333°C TTES=327.8°C



Thermal Energy Storage

Eutectic Melting Point, C Composition mol% Theoretical Latent heat (J/g)

FeCl2-NaCl-KCl 333 33.5-33.5-33.0 309

FeCl2-NaCl-KCl 310 44.5-29.2-26.3 187

FeCl2-NaCl-KCl 319 37.1-11.8-51.1 142

MgCl2-KCl-NaCl 331 34.4-65.7-25.1 198

Zn- Mg 340 52-48 wt% 180

CuCl- NaCl 314 73 - 27 -

CuCl- KCl 325 30 - 70 -

LiBr/KBr 328 333

• FeCl2-NaCl-KCl - The most appropriate cost effective PCM that melts around 335C and operates with a 

high cyclic efficiency in the temperature range of 300-350C.

• Other PCMs* considered are shown below – Could use these in certain TES configurations

Thermal Energy Storage Test Setup at University of South Florida (USF)

Cylindrical TES DesignSpherical TES Design
* Gomez, J., “High-Temperature Phase Change Materials (PCM) Candidates 

for Thermal Energy Storage (TES) Applications”, U.S. DOE-NREL Milestone Report,

NREL/TP-5500-51446, Contract No. DE-AC36-08GO28308, September 2011 



Lumped Capacitance Thermal Analysis

 JPL/Northrup Grumman Reflux Boiler / TES Design 

Configuration

 TES Thermal Sources & Thermal Sinks Included

 Working Fluid & Chamber Structure Included

 Solar Sources Included

 TAPC Thermal Sink Included

 Differentiates Discharge & Charge Rates for Different 

TES Materials

 Identifies Solar Input Thresholds – Therefore Reflector / 

Dish Requirements

 Helps Distinguish & Quantify Cost/Performance 

Tradeoffs
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TES Thermal Analysis – Low Excess Sun (Solar Dish Too Small)

 Long Charge Times - Untenable

 Sensible Charge Time Comparable to 

Latent Charge

 Need Threshold Solar Level

TES Charge

FeCl2 NaCl KCl LiBr KBr CaCl2 KCl LiCl

Melting Temp (C) 332.6 327.8 338.4

Latent Heat (J/kg) 308880 333000 241200

Solid CCP (J/kg-K) 1326 562 950

Liquid CCP (J/kg-K) 1695 672 1200

Mass TES (kg) 52.5 49.0 68.0

900 W Thermal Input (Excess Sun) 

with 300 W loss

Cloud Passage Event



2025 W Thermal Input (Excess 

Sun) with 300 W loss

FeCl2 NaCl KCl LiBr KBr CaCl2 KCl LiCl

Melting Temp (C) 332.6 327.8 338.4

Latent Heat (J/kg) 308880 333000 241200

Solid CCP (J/kg-K) 1326 562 950

Liquid CCP (J/kg-K) 1695 672 1200

Mass TES (kg) 52.5 49.0 68.0

TES Thermal Analysis – Reasonable Excess Sun (1/2 Solar Dish 

Available)

 Much Shorter Charge Times

 Sensible Charge Times Shorter 

than Latent Charge

 LiBr/KBr Shortest – But Most 

Expensive 

 FeCl2/NaCl/KCl Least Expensive

Cloud Passage Event

87% of Es Total Energy Storage = 18.9MJ

Total Energy Storage = 18.5MJ87.6% of Es

Total Energy Storage = 17.1MJ95.5% of Es



Multiple TES Materials 

 SGen ~ (Q/T) is Lower in This Scheme

 Highest Temperature TES Gives Thermal “Switch” Capability

 3 TES Layer Analogous to 3 PV Bandgaps (Thermal Phonons vs. Near-IR/Visible Photons)

 Extending: Infinite TES Layer Analogous with Infinite Number of PV Bandgaps
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Multiple TES Materials

 SGen ~ (Q/T) is Lower in This Scheme

 Highest Temperature TES Gives Thermal “Switch” Capability
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Multiple Temperature-Staged Analysis 

• Different Charge / Discharge Scenarios Considered

– Fast Charge Scenario during initial charge-up in morning using full thermal input capability will 

create charge up time same as discharge time (~15 minutes)

– Typical Mid-Day Re-Charge after short Sun-Off period (~15 minutes)

National Aeronautics and Space Administration

 Allows One to Charge / Discharge in 

Incremental Steps

 This Lowers the Total Thermal Exergy 

Loss in the Round-Trip Process

 Back to 90% Energy Storage in PCM 

with Higher Ultimate Storage 

Temperature

 Can Be Extended to More Stages, but 

Benefits Depend on Specific Designs,  

Thermophysical Properties, & Cost



 Temperature staging of multiple TES materials does 

offer design and performance benefits as demonstrated in 

these analyses and results, 

 It does require judicious selection of the TES materials 

with close consideration and matching of their 

thermophysical properties and phase change 

temperatures.  

 Thermal storage performance with multiple TES 

materials can store thermal energy at multiple 

temperature levels

 Providing thermal exergy benefits 

 Storing more thermal energy between set thermal limits

 Providing higher ultimate storage temperatures

 Providing a “thermal switch” capability to accommodate 

any runaway thermal excursions or extreme transients in 

Hybrid Solar Photovoltaic / Thermoacoustic Power 

Converter system. 

National Aeronautics and Space Administration

Multiple Temperature-Staged Analysis 



Multiple Temperature-Staged Analysis 

National Aeronautics and Space Administration

Total Energy 

Stored (MJ)

Latent Heat 

Storage 

Fraction  (%)

Highest Latent 

Storage 

Temperature 

Obtained

Latent Heat 

Entropy-Eq.7 

(J/K)

Sensible Heat 

Entropy-Eq.6 

(J/K)

TES 23 17.86 0.9107 332.6°C 0.083 6482

TES 34 18.83 0.8584 338.4°C ~0.1 7916

TES 234 18.23 0.8897 338.4°C 0.174 6716

TES 1234 19.35 0.8369 338.4°C 0.315 8164

 Four TES configurations were considered using 4 TES materials to establish temperature stages

 Latent and Sensible Heat entropy was evaluated using entropy equations shown in the paper

 Minimizing entropy depends strongly on material selections and their particular phase change 

temperatures

TES 23 & TES 234 

Configurations Clearly 

Low Entropy Cases

 Low Entropy Cases Also 

Have Highest Latent 

Heat Storage Fractions



Key Exergy Optimization Design Parameters

• The TES optimization process is completely controlled by:

– (Cp,TES/hlat,TES)

– (Cp,Naph/hlat,TES) ratios

– (mNaph/mTES) ratio 

– TES operating temperature of interest 

– Cost and safety of these different TES materials

• Lower (Cp,TES/hlat,TES) and (Cp,Naph/hlat,TES) ratios leading to lower entropy generation (lower exergy) 

designs.  

• This TES optimization process is then tempered by the critically important cost and safety 

considerations of the various TES options.   

• Initial system-level models and analyses have provided critical design sizing information and 

demonstrated key thermal performance sensitivities associated with the current hybrid power system. 

National Aeronautics and Space Administration
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Summary

• Reflux Boiler / TES is Critical to System Operation

– Low exergy thermal transport into TAPC

– Low exergy yhermal transport Into/Out of TES

– TES designed directly into reflux boiler system

• Several TES Materials Investigated – Work in Progress

– Various chemistries

– Various phase-change temperatures

– Various energy storage densities

• Temperature Staging of TES Can Lower Thermal Exergy as System Charges/Discharges

– More heat transfer occurs at lower temperature differentials at each stage

– Large fraction of thermal energy stored at appropriate phase change temperatures

– Optimization depends strongly on TES materials selected, their phase change temperature, & key design 

parameters mentioned on previous slide

– Provides for higher ultimate storage temperature – Important for TAPC integration

– Design pathway could yield lower cost system depending on TES materials choices – Still evaluating Details

• Future Work Will Incorporate & Optimize This Approach into System-Level Designs & Configurations
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New TES Encapsulation Technology

19

• A major technology breakthrough enables

– Small Capsules have large heat transfer area

– Creates the required void inside capsules for salt to expand on heating using a common 
encapsulation method

• Technology proven in the laboratory in gm qty

– Used readily available KNO3 prills…

• JPL Obtaining Small Quantities to Embark on N-Compatibility Verification

Jet Propulsion Laboratory/California Institute of 

Technology Proprietary


