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August 24, 2016: Using a telescope in Chile, European astronomers
detect a planet around Proxima Centauri, only 4.2 light years away.
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3,396 Confirmed Exoplanets

(as of 10/8/16)

06 Oct 2016
exoplanetarchive.ipac.caltech.edu

Radial Velocity

Microlensing
Imaging

Orbital Brightness
Modulation

7))
-
()]
-
©
al
Y
@
©
@)
=
-
Z

Discovery

-http://exoplanetarchive.ipac.caltech.edu/exoplanetplots/




By Method

o 78 ) 9% Transit v

. © 17 6%  Radial Velocity .

- ) 1 3% Imaging “

® 1.2% Microlensing v

0.44% Transit Timing Variations, 0.24% Eclipse Timing Variations, 0.18% Orbital
Brightness Modulation, 0.15% Pulsar Timing, 0.06% Fulsation Timing Variations,
0.03% Astrometry






Starlight Suppression is the Key Technology In the
Search for Life on Earth-Size Exoplanets
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Towards the Detection of Exo-Earths
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Possible New Worlds Exoplanet Telescopes
(mid-2030s)
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Two direct imaging mission concept studies:
HabEx and LUVOIR

Both have goal of studying Earthlike planets in reflected
light; they differ in levels of ambition

e HabEXx to “search for” signs of habitability and biosignatures

e LUVOIR to “constrain the frequency of” habitability and biosignatures =
larger statistical survey of exoEarths, larger aperture

HabEXx to focus on exoplanets, “best effort” only on general
astrophysics. Perhaps only 2 instruments, like WFIRST.
Aperture < ~8 m. Study led by NASA JPL.

LUVOIR gives equal priority to exoplanets and general
astrophysics. Would be HST- and JWST-like, expansive
vision. Aperture 8-12 m. Study led by NASA Goddard.

They are likely to differ in cost and technical readiness

Interim reports late 2017; final reports early 2019



NASA Exoplanet Exploration Program

One of three programs within the NASA Astrophysics Division, Science

Mission Directorate

et e asa

Z € o Purpose described in

< 2014 NASA Science Plan

ol

(Uj 1. Discover planets around other stars

5 2. Characterize their properties

6 3. Identify candidates that could harbor life
() 2014

EXEP serves the science community and NASA by
iImplementing NASA's space science vision for exoplanets

http://exoplanets.nasa.gov/exep
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The NASA Exoplanet Exploration Program

Space Missions and Mission Studies
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EXEP Technology Selection and
Prioritization Process

N,

S
21 New Technology 97/1& 14 Technology gaps
Gaps from Exoplanet carried over from
Community == 2016

Neither enhancing
nor enabling

Selection: enables or - m
enhances direct R—

( detection and

Selection and No, but could
Prioritization benefit exoplanet science
Criteria:
* Peer reviewed _— _ technologies that
e« Exo-TAC Prioritize technologies benefit exoplanet
reviewed according to criteria -
(Impact, Urgency, and
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U - | E 0100
FriQ 20
Gap ID Gap Title Impact|Urgency|Trend | Total
Optical Performance Demonstration and
e Oztical Modeling ¢ ¢ 2 190
CG-1 |Large Aperture Mirrors 4 3 3 85
CG-2 |Coronagraph Architecture 4 3 3 85
CG-6 Mirror Figure (Segment Phasing) Sense & 4 3 3 85
Control
CG-7 [Telescope Vibration Control 4 3 3 85
CG-9 |NIR Ultra-Low Noise Detector 4 3 3 85
S-1 Control Edge-Scattered Sunlight 4 4 1 85
S-3 Lateral Formation Flying Sensing 4 4 1 85
S-4 Petal Shape 4 4 1 85
S-5 Inner Disk Deployment 4 4 1 85
S-6 Petal Deployment 4 4 1 85
CG-3 [Low-Order Wavefront Sensing and Control 4 3 2 80
CG-5 |Deformable Mirrors 4 3 2 80
CG-8 |Visible Ultra-Low Noise Detector 4 3 2 80
M-1  [Extreme Precision Radial Velocity 3 3 3 75
CG-4 |Post-Data Processing 4 2 2 70
CG-9 UV/NIR/Vis mirror coatings 3 3 2 70
CG-10 Mid-IR Spectral Coronagraph 2 3 3 65
CG-11 UV Ultra-low noise detector 2 3 2 60

Enabling Gap
Enhancing Gap
Watch List

Sub-Kelvin Coolers

Advanced Cryocooler

Mid-IR Ultra-low Noise Detector

Astrometry



Coronagraph/Telescope Technology Needs

Starlight Suppression
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Coronagraph Technology Needs

Starlight Suppression

Coronagraphy optics

Future Needs:

« Raw contrast < 10 (obscured and segmented)
« IWA<3AD
« Bandwidth =2 10%

SOA:

« WFIRST: Raw contrast: few x 10° (obscured);
3x1019 (unobscured; Hybrid Lyot)

- IWA~3AND

« Bandwidth 10%

Current Activities:

 WFIRST coronagraphs planned to achieve TRL
5byend FY16

« Additional demonstrations ongoing at STScl
(APLC) and GSFC (VNC)

« EXEP planning FY16 design study to identify
coronagraph architectures that can reach < 10-°
on large segmented apertures (FY16)

» Pre-Decadal mission concepts in FY16-18



Segmented Coronagraph Design Analysis
(funded by the EXEP)

277 m 1,98 m
Tip-to-tip Tip-to-tip
4,0 m flat-to-flat 2.4 m flat-to-flat 1.71 m flat-to-flat

12m (widest flat-to-flat dimension]; 12 m (widest flat-to-flat dimension)ﬂ 12m (widest flat-to-flat dimension)ﬂ.

1.54m
Tip-to-tip
1.33 m flat-to-flat = 471 m

—

12 (widest flat-to-flat dimension) “ 12 m diameter " " 12 m diameter



Coronagraph Technology Needs

Starlight Suppression

Deformable mirrors
(Xinetics 48x48)

Need:

* 2 96x96 actuators

radiation and env’t qualified
flight electronics and connectors
pitch sizes <1 mm

stroke = 500 um

SOA:
* 64x64 electrostrictive actuators by Xinetics
(WFIRST baselined 48x48)
= pitch size =1 mm
= stroke = 500 um
« 3x10-19 contrast achieved with 32x32

Current Activities:

« 48x48 Xinetics DMs are being flight
gualified, connector study, flight electronics
design (WFIRST; FY16-17)

« MEMS DMs (BMC and Iris AO) env't testing
(FY16-17)

* Pre-Decadal mission concepts in FY16-18




Coronagraph Technology Needs

Needs:
Wavefront Stability  Low-order WFE terms sensed and
gy corrected to maintain 101! contrast
JTelescope stability
| 7%\/\1\7 « <10 pm rms uncorrected WFE
Adaptive Distorted
Wavefront
SOA:

« Zernike wavefront sensor

Oy baselined on WFIRST
N\, Wavefront » 14 mas simulated jitter input
24 (tip/tilt only) corrected to < 0.5
mas rms residual

High-resolution

Wavefront Camera Current Activities:

Sensor

« WFIRST LOWFS sensing and
controll of first few modes to be
demonstrated with a telescope and
env’'t simulator with a coronagraph
(RES)

» Pre-Decadal mission concepts in
FY16-18

Low-order wavefront sensing
and control



Coronagraph Technology Needs

Wavefront Stability Needs: ]
« Segment phasing control to < 10 pm rms
WFE
N . Disturbance: 140 dB at > 40 Hz

N Relative to SOA:
: « WEF stability 2-3 OOM better than HST
« 1-2 OOM segment phasing and rigid
A\ body control (non-NASA); 3 OOM JWST
_ I « 1 OOM in vibration control (WFIRST)
Segment phasing and rigid body control ,  pisturbance: 80 dB at > 40 Hz (JWST;

passive)

Current Activities
* Pre-Decadal mission concepts in FY16-
18 to conduct key systems trade studies
« segmented vs monolith primaries
 active control vs passive vs hybrid
for thermal, vibration, SFE

Telescope vibration control Note: can be relaxed to SOA for starshade




Coronagraph Technology Needs

Needs (Visible): Detection Sensitivity
* 0.4 — 1 um ultra-low noise detectors
 Read noise: << 0.1 €’/pix

» Dark current: < 0.0001 e’/pix/s
 Format: > 2kx2k

* Radiation hard

Relative to SOA:

 1kxlk EMCCD baselined for WFIRST
« OOMiIn RN and DC

* Not environmentally tested

e2V EMCCD 1kx1k

Current Activities:

* Radiation testing (WFIRST; FY15-16)

» Flight R/O electronics design (WFIRST;
FY16-18)

« Env't testing (WFIRST)




Coronagraph Technology Needs

Needs (IR):

1-5um

Read noise: < 1 e'/pix

Dark current: < 0.001 e'/pix/s
Format: arrays of = 2kx2k
Radiation hard
Zero-vibration cooling

Relative to SOA:

HgCdTe APD Hybrid

Read noise: << 1 €’/pix
Dark current: 10-20 e’/pix/s
Format: arrays of < 1kx1k

Current Activities:

HgCdTe (WFIRST) and APD noise
reduction efforts

MKIDS and TES are low-TRL cryo
solutions

Pre-Decadal mission concepts to
determine long A cutoff (FY16)

Detection Sensitivity

ybrid |Reduce dark current |[Reduce darkcurrent | |
T<s i<
<5 [mi<s

Reduce dark Reduce dark Reduce dark
current current current

TRL = 6; Sufficiently mature for pre Phase-A
Promisi e gy, more work needed in specific area

May be worth looking into with additional optimization

Rauscher et al 2015 (SPIE)



Coronagraph Technology Needs

Starlight Suppression _
- Angular Resolution

\\ -
~ -
~ -

o + increased sensitivity

+ higher throughput

@ + shorter integration time
+ greater planet yield

y Detection Sensitivity

Wavefront Stability



Coronagraph Technology Needs

Needs:

* 2 4m monoliths and = 8m segmented mirrors

« SFE <10 nm RMS

« Active thermal control; likely figure control for
segments

Anqular Resolution

SOA:
« Monolith: HST’s 2.4m (~ 10 rms SFE) R
- Segmented: JWST’s 6.5m (18 segments, 1.3m) Large mono]ith
« SFE: <30 nm RMS (Gemini 8.1m ULE)

Current Activities:

« Non-NASA investments

« Pre-Decadal mission concepts will
study monolith vs segments,
materials, active figure control

Segmented
(AMSD lightweighted
ULE Segment; ITT)

Segmented
AHM SiC-based
Segment, Xinetics

25



Coronagraph/Telescope Technology Needs

Contrast

== ~s __--Angular Resolution

Coronagraph
architectures

Deformable mirrors

HSTNICMOS with addionsl processing

Segmented

Wavefront

sensing and control W . Telescope vibration
. \ sensing and control

Ultra-low noise visible and infrared detectors

Segment phasing and rigid body
sensing and control



Starshade Technology Needs

What’s not hard...

Spacecraft Bus

Space Telescope

- Payload Optics

27



Starshade Technology Needs

Diffraction and Scattered

Light Control ) Lateral Formation

. _-~" Flying Sensing

Large Deployed Structures



Starshade Technology Needs

Diffraction and Scattered
Light Control

Needs:

« Contrast < 10'1° demonstrated near
the petal edges at a flight Fresnel
number
| G « Optical model validation

j | e » Optical edge material identified and

i integrated to a full-scale petal
3

Current Activities:
NGAS » Optical performance and modeling
studies (Princeton/JPL, NGAS,
i i B Colorado/JPL) — FY16-18

B B - Optical edge studies (NGAS, JPL)
' 1 | 1 _FY16-17




Starshade Technology Needs

Large Deployable Structures

Needs:

* Full-scale (~ 7m) petal with flight-like
materials that meet manufacturing
tolerances (< 70 um).

» FY16-17 (Princeton/JPL)

» Half-scale (10m) inner disk prototype
with flight-like components and
opagque membrane that meets
deployment tolerances (< 0.45 mm).

> FY16-17 (JPL)

* Full-scale petal latching and unfurling
mechanism verifying no edge contact
during launch and petal unfurling

» FY16-18 (Roccor/JPL)

» 80m-class starshades designs?
(TBD)

Petal unfurling concept
(Roccor)

6m petal (Princeton/JPL)



Starshade Technology Needs

Needs:

« Sense relative lateral offsets between
telescope and starshade to within £ 20
cm at 50,000 km distance

o Measure bearing angle to within *

1.25 mas

Current Activities:

« Demonstrating mas bearing sensitivity
with feedback control in scaled

testbeds

» Princeton/JPL, Colorado (FY16-17)
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Starshade Technology Needs

Diffraction and Scattered

) Lateral Formation
Light Control N

N _--" Flying Sensing




Recent Starshade Technology News

» NASA-chartered starshade technology activity in March
— Starshade Technology Project advances technology to TRL-5
— Starshade Technology Community Meeting on December 1

» Starshade Readiness Working Group commenced in January to
identify the recommended path to flight for a starshade mission.
— Multi-institutional working group and participation
— Report out to NASA HQ in November 2016

» WEFIRST is assessing the impact of accommodating a potential
future starshade mission
— Final decision will be made no later than summer of 2017.

33



EXEP Technology Gap Lists

Starshade Technology Gap List
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Opportunities to Participate

Engage with the ExoPAG (Program Analysis Group) — the exoplanet
community group (http://exep.jpl.nasa.gov/exopag/)

Propose for a Small Business Innovation Research (SBIR) grant
— All EXEP technology gaps are mapped to the 2015 NASA Technology Roadmaps
> http://www.nasa.gov/offices/oct/home/roadmaps/index.htmi

Propose for a Technology Development for Exoplanet Missions (TDEM)
— TRL 3-5 (http://nspires.nasaprs.com/external/)

Propose for an Astrophysics Research and Analysis (APRA) grant
— TRL 1-2 (http://nspires.nasaprs.com/external/)

Visit the Exoplanet Exploration Program (EXEP) website
— http://lexep.jpl.nasa.gov/

Contact me directly: nsiegler@jpl.nasa.gov
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Coronagraphs versus Starshades
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