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Surface Observations

A Chlorophyll a fluorescence at 755 nm June 2009 through May 2010 average

GOSAT/OCO-2 SIF, Jason
SST, nightlights, etc.

Anthropogenic emissions

Terrestrial exchange

Ocean exchange

Inversion System

Atmospheric transport and
chemistry model

Inverse Model

Posterior Carbon Fluxes (CO,,
CH,4, CO)

Atmospheric Observations

60 30 g

0CO-2 CO2,
GOSAT CO2 and CH4,
MOPITT CO
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Liu, Bowman, and Lee, in press

 CMS-Flux now incorporates a Local Ensemble Transform Kalman
Filter (LETKF) (Liu, Bowman, and Lee, JGR, in press)

« Good agreement overall between 4D-var and LETKF

« OCO-2 constrained fluxes can be rapidly updated in LETKF

 LETKF incorporates advanced diagnostics, e.g., observation impact




LETKF can provide

boundary conditions and

concentration
uncertainties to force
regional models.

(b) two—year mean;black: obs; blue: E
red: 4D—Var(rms=0.57); green: LETKF(rms=0.82)

(a) RMS, obs(black),prior(blue)=2.39ppm
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CMS-Flux has integrated COS
fluxes building off of Kuai et al,
2014, 2015 using TES OCS

measurements.
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CMS-Fqu IS based upon

GEOS-Chem, which is a full
chemistry and transport model.

Developed a North America
“nested” forward and adjoint

mode (0.5x0.667) for both
carbon and active species.
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If predicted concentrations, e.g.,
CO2, CO, are different from
observed, what fluxes are
implicated?

Liu and Bowman, GRL (2016)
developed an adjoint methodology
to attribute model-data differences
to surface fluxes.

This approach can be applied to
both Eulerian and Lagrangian

techniques.
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CMS-Flux can simulate CO2, CO, COS, (CH4), and active chemistry
(03, NO2, etc.)

LETKF can produce boundary conditions faster than our 4D-var
approach.

— Current driver is OCO-2 and MOPITT (1-2 month latency)
— Working with Penn State (Lauvaux et al)

Developing a NA nested forward and adjoint mode (0.25x0.325 or
0.5x0.667) for CO2, CO, COS, and SIF.

— Interested in using multi-constituents to separate flux and meteorological
drivers of carbon variability using Liu and Bowman methodology.

— Like to partner with CSU (Denning, Baker), Stanford (Berry)-—Others?

Active species, e.g., ozone, could be valuable to interpret CO2
transport, e.g., Deng et al, 2015, and are interesting in their own
right.

— Not planning to pursue yet, depends on group interest.
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“#+Tropospheric 0zone

CMS-Flux is based upon
GEOS-Chem, which is a full
chemistry and transport
model.

Ozone (ppb)

AIRS—0MI: Ozone, Pres=681.3 hPa, 2013—-10-15 to 2013-10-17
Tot # Obs = 3429, # Good Cbs = 2534, Min Val = 21.6 ppb, Max Val = 135.5 ppb
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4D-Var (land) LETKF (land) 4D-Var LETKF
(land+ocean) (land+ocean)

North American Boreal 0.085 0.085+0.10 -0.08+0.09 -0.23+0.07 -0.08 -0.24+0.07
North American temperate -0.88 -1.1040.25 -0.75+0.19 -0.75%0.12 -0.79 -0.72+0.11
South American tropical 0.69 0.681£0.33 0.5910.21 0.6910.25 0.60 0.64+0.17

South American temperate -0.37 -0.71+0.31 -0.31+0.21 -0.37+0.15 -0.32 -0.36%0.12

-0.43  -0.20%0.21 -0.61+0.13 -0.39+0.16 -0.45 -0.36%0.12
-1.73  -1.29+0.23 -1.6240.18 -1.66+0.08 -1.63 -1.7240.06
-0.38  -0.41%0.12 -0.55+0.09 -0.60%0.13 -0.58 -0.61+0.13
-0.63  -0.69+0.18 -0.41£0.22 -0.41£0.13 -0.33 -0.3940.13
-0.26  -0.29%0.29 -0.3940.23 -0.41%0.18 -0.36 -0.30£0.14

-0.27 -0.24+0.13 -0.15+0.09 -0.14+0.12 -0.20 -0.18+0.09

“ -0.86  -1.02+0.21 -1.12+0.13 -1.08+0.11 -1.20 -1.14+0.11




