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The NASA Exoplanet Exploration Program

Space Missions and Mission Studies
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Driving Documents Driving the Technology
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3,396 Confirmed Exoplanets

(as of 10/8/16)

06 Oct 2016
exoplanetarchive.ipac.caltech.edu
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By Method
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Starlight Suppression is the Key Technology In the
Search for Life on Earth-Size Exoplanets
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Towards the Detection of Exo-Earths
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How a Coronagraph Works



Coronagraph/Telescope Technology Needs

Contrast

== ~~. __--Angular Resolution

Coronagraph
architectures

Deformable mirrors

Large monolith

HSTNICMOS with addionsl processing

Segmented

Wavefront

. sensing and control ) . )
Ultra-low noise visible and infrared detectors

Segment phasing and rigid body
sensing and control



Segmented Coronagraph Design Analysis

4,62 m 2.77m 1,98 m
Tip-to-tip Tip-to-tip Tip-to-tip
4,0 m flat-to-flat 2.4 m flat-to-flat 1.71 m flat-to-flat

12m (widest flat-to-flat dimension]; 12 m (widest flat-to-flat dimension)ﬂ 12m (widest flat-to-flat dimension)ﬂ.

1.54m
Tip-to-tip
1.33 m flat-to-flat | _. —_—

12 m diameter 12 m diameter

12 (widest flat-to-flat dimension)



NASA's High Contrast Imaging Testbeds (JPL)
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Starshade Concept



STy, tarshade
/,diameter 34 m

Separation distahce
30,000 - 50,000 km
+250 km
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Starshade Technology Needs

Light Suppression Formation Sensing

. _ and Control

\

Deploymlent Accuracy and
Shape Stability

Suppressing diffracted light
from on-axis starlight
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Desert Testing of the Starshade

Northrop Grumman Aerospace Systems
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Desert Testing of the Starshade
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Desert Testing of the Starshade
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Optical Demonstrations at Princeton University
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Starshade Technology Needs

Formation Sensing
. _ and Control

Suppresging scatted light off petal
edges from off-axis Sunlight

NG

\

Deploym'ent Accuracy and
Shape Stability

Suppressing diffracted light
from on-axis starlight

Fabricating the petal
Y to high precision
Positioning the petals to high precision, blocking on-axis starlight,

maintaining overall shape on a highly stable structure 2



Inner Disk Prototype Deployment Trial at JPL




2 m Optical Shield Prototype Deployment Trial at JPL




5 m Origami Optical Shield Deployment Trial at JPL




5 m Optical Shield Prototype
(with more flight-like material)




Starshade Technology Needs

Starlight Suppression

N

Formation Sensing
. _ and Control

Suppressing scatted light off petal
edges from off-axis Sunlight

Maintaining lateral offset requirement
between the spacecrafts

\

Deploym'ent Accuracy and
Shape Stability

Suppressing diffracted light
from on-axis starlight

Fabricating the petal
to high precision

Positioning the petals to high precision, blocking on-axis starlight,
maintaining overall shape on a highly stable structure 26



Key Benefits of the Starshade

4
A starshade does not care what the telescope looks like.
— Conventional on-axis and segmented telescopes are fine

« Diffraction by the segment gaps is a non-factor, the Starshade does all
the starlight suppression

Telescope stability requirements significantly relaxed
Wavefront sensing and correction is unnecessary

The starshade not the telescope defines the inner working angle
— Unlike coronagraphs
— Although it is still wavelength dependent

High throughput
— Several times higher than coronagraphs
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Key Disadvantages of the Starshade

Relatively long times between observations
— Need to slew the starshade between targets

Limited number of Starshade movements
— Before you run out of propellant

Full-scale end-to-end system optical testing on the ground not
possible

— Must rely on sub-scale lab and field optical tests as well as high-
fidelity, validated models

28



Recent Starshade Technology News

» NASA-chartered starshade technology activity in March
— Starshade Technology Project advances technology to TRL-5

» Starshade Readiness Working Group commenced in January to
identify the recommended path to flight for a starshade mission.

— Multi-institutional working group and participation
— Report out to NASA HQ by October 2016

» WEFIRST is assessing the impact of accommodating a potential
future starshade mission
— Final decision will be made no later than summer of 2017.
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EXEP Technology Gap Lists

Starshade Technology Gap List
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Additional Slides
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The TRL-6 Success Criteria -
that the SSWG Options Need to Meet

Exoplanet Exploration Program

Technology Key Performance TRL-6 End-State Fidelity (Prototype) Tested in Relevant
Area Tolerances (30) Fit Form Function Environment; Life Testing

Petal Shape and Stability

Performance Verification Model Validation

Required Deploy and thermal cycles Measgre shape after deployme_nt and t_hermal CTE, CME, creep
High fidelity with performance cycles; long-term stowed bending strain
In-plane envelope: . High-fidelity ... |Measure shape with optical shield at temp; .
scaling issues demonstrated | Temperature and humidity | . . - Shape vs. applied loads
+ 100 pm prototype A moisture absorption and loss (de-gassing)
understood with critical
Deployment interfaces Stowed strain Test on-orbit petal shape with all errors Shape vs. temperature
Accuracy and - pepjoved Petal Position
Shape - o
Stabilit Measure position after deployment cycles in air
Y Required 0-gravity and vacuum  |with negligible air drag and imperfect gravity CTE, CME, creep
High fidelity with . . erformance comp.
L322 e f(]:alin i:zues High-fidelity c?emonstrated -
+1mm 9 prototype e Temperature and humidity |Measure position with optical shield at temp.  [Shape vs. applied loads
understood with critical
interfaces Stowed strain Test on-orbit petal shape with all errors Shape vs. temperature
Bearing Angle Sensing and
Control
Formation Required
Sensing and Sensing: + 1 mas High fidelity with High-fidelity performance Measure angular offsets with brassboard guide PSEs
Control scaling issues ?0 totype demonstrated | Large separation distance |camera (coronagraph instrument) that simulates bearing andle vs. sianal
Control (modeling): +1m understood P with critical PSFs and fiuxes from beacon and star ngangie\s. s
interfaces
Sunlight Suppression
Required Same as for petal shape |Measure petal level scatter after environment
Edlge radius X reflectivity: High Iﬁdel.rty with High-fidelity performance and stability tests at discrete angles Scatter vs. sun angle
<10 um-% scaling|issues prototype der.nonst.r.ated — Measure coupon level scatter after Scatter vs. dust
understood with critical . environment tests at all sun angles
Light interfaces Dust in launch fairing [ Test effect for on-orbit solar glint
Suppression Starlight Suppression
Supression (test): < 1x1 0° High fidelity with Required
scaling issues . . performance . . Optical performance,
High-fidelity Measure image plane suppression between L
Contrast (modeling): < 1x1 ol understood rololvne demonstrated Space 500-850 nm sensitivity to
lidted .d_ (including prototyp with critical perturbations
detlelie il Fresnel #) interfaces

All critical scaling and interface issues addressed



Recent Starshade Technology News

» NASA-chartered starshade technology activity in March
— Starshade Technology Project advances technology to TRL-5

» Starshade Readiness Working Group commenced in January to
identify the recommended path to flight for a starshade mission.

— Multi-institutional working group and participation
— Report out to NASA HQ by October 2016

» WEFIRST is assessing the impact of accommodating a potential
future starshade mission
— Final decision will be made no later than summer of 2017.
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Detecting Rocky Earth-Size Planets

e Next generation coronagraphs may likely

L / -need.to work with telescopes that are on-axis

f : . and segm..e‘rlted, with apertures = 8m.
R |

addltlonal diffraction effects to reach 10-10 — 10-
- 100x better than WFIRST

s " 2. telescope: — 3-10x better than WFIRST
b ZCRAF | it asing ac to
~ “10-100x better than non-NASA
4, | — 3-10x better than

WFIRST
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