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Goal: LUVOIR Surveyor

Challenging Requirements

LUVOIR detector requirements

M. R. Bolcar, et al. SPIE 2015
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Superconducting Nanowire Single Photon Detetectors (SNSPDs)

Array size < 102

Rad Hard Yes

Efficiency > 90%

Bandwidth UV to mid IR

Operating 
Temperature 1 – 10 K

Noise < 1 cps

Energy Resolution No

Time resolution High (~ 50 ps)

Maximum count rate 50 MHz

15 μm

160 nm

SNSPD performance

Single-pixel SNSPDs perform photon counting with the best 
performance, but it is difficult to make large arrays
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Nanowire Resonator Detectors (NRDs)

New detector concept for large arrays of 
ultrasensitive single-photon detectors by combining 
SNSPD and superconducting resonator technologies



NRD Operating Principle
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NRD Operating Principle

The RF tone is resonant with the superconducting resonator
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sensing element

readout element
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The photon causes the SNSPD to switch from the
superconducting (not resistive) to the normal (resistive) state



Detection Mechanism of SNSPDs
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Detection Mechanism of SNSPDs

Superconducting

Photon creates hotspot
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Semenov, A., et al., Eur. Phys. J. B 47, 
495-501 (2005)

Bias Current (IB)
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Detection Mechanism of SNSPDs
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Normal domain expands 
(Joule Expansion)

L

IB

RLSNSPD

Yang, J. K. W. et al. IEEE Trans. Appl. 
Supercond. 17, 581-585 (2007).
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Detection Mechanism of SNSPDs
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The current redistribution causes the inductance of the
SR to increase
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Current Dependence of Kinetic Inductance

The inductance of a superconducting inductor increases with bias current

A. J. Annunziata et al. Nanotechnology 21, 445202 (2010).
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Due to the change in LR, the RF tone is no longer resonant with the
superconducting resonator and is transmitted to the readout
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LR returns to the steady-state value, so the RF tone is
resonant with the SR again
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Photon

Simulation: Single-Pixel NRD Operation



Multiplexing
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Photon on nKID #1 Photon on nKID #2Simulations



Detection Efficiency
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Si (substrate)

SiO2 (thermal)
Au (mirror)
SiO2 (sputtered)

WSi SNSPD

TiO2

Au (pads)

SNSPD in a Cavity

• Photosensitive nanowire element is embedded in a vertical quarter-wave cavity

• Enhances detection efficiency from 20% to >90%

• Developed optimized cavities at 1550 nm, 1310 nm, 980 nm, 795nm, and 370 nm

Detector Layer



Optical Bandwidth
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λ = 2.1 μm

λ =  3.8 μm

λ = 3 μm

λ = 4.2 μm

SNSPD Efficiency in the Mid-IR

λ

w = 100 nm

Plateau in detection efficiency indicates near-unity internal detection efficiency
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• 70 – 80% device efficiency at 370 nm
• System dark count rate < 10 mHz at 4 K
• Blind to 1550 nm photons

bias current ( A)
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Prospects for Shorter Wavelengths

• Broadband efficiency > 60% for UV wavelengths
• Prediction is limited by lack of knowledge of MoSi n & k values below 200 nm
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Operating Temperature
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Possible NRD materials

Bulk TC ~ 6.8 K
Single-Photon detection at 4 K

Bulk Tc ~ 40 K
Single-Photon detection at 20 K

MgB2MoSi
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NRDs can fulfill most of LUVOIR detector requirements
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