A Humidity-Driven Prediction
System for Influenza
Outbreaks

Heidar Thor Thrastarson

Joint Institute For Regional Earth System Science and Engineering,
University of California Los Angeles
NASA Jet Propulsion Laboratory, California Institute of Technology

Joao Teixeira
NASA Jet Propulsion Laboratory, California Institute of Technology

Enoch Yeo
Harvey Mudd College

NASA Sounder Science Team Meeting, September, 2016



Background - Motivation

* Seasonal influenza epidemics are a major public health concern, resulting in
millions of cases of severe illness and 250,000 to 500,000 deaths worldwide each
year as well as a large economic toll.

* Intemperate regions influenza incidence generally has pronounced peaks in the
winter, but the specific timing, magnitude and duration of individual local
outbreaks in any given year are variable and not well explained.

e If the timing and intensity of seasonal influenza outbreaks can be forecast, this
would be of great value for public health response efforts.

* It could guide both mitigation and response efforts, planning and stockpiling of
vaccines and drugs, management of hospital resources, focusing of efforts to areas
with more urgent need.

* Recent studies have highlighted a role of absolute (or specific) humidity conditions
as a leading explanation for the seasonal behavior of influenza outbreaks.
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”(“\’ff‘ Absolute Humidity as a Driver of
Influenza Seasonality
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Model of Influenza Outbreaks

We have developed and implemented a SIRS (Susceptible-
Infectious-Recovered-Susceptible) type numerical
prediction system that is driven by specific humidity to
predict influenza outbreaks.

Two coupled first-order Ordinary Differential Equations
numerically solved for the number of susceptible and
infected/infectious people in a given population.

Rate of infections and recoveries parameterized in terms of
average length of immunity and mean infectious period
and assumed to have a simple dependence on input
specific humidity.



SIRS Model
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Humidity Data

For the humidity, we use satellite data from the NASA AIRS instrument.

The model is integrated for a specified time period, with humidity data
updated each day (when data is available) and the ODE’s solved in the
intervals between, on a specified time grid.

We use surface water mass mixing ratio (close to specific humidity), data
for the ascending mode of the satellite, so daytime values, level 3 data
(version 6), averaged onto 1x1 degree latitude/longitude uniform grid
cells.

We model several US cities and for each of them we take the single grid
cell that contains the largest part of that city (also considered state/
regional averages).

Also have a version with NCEP humidity forecasts incorporated (but still
always using latest observed AIRS values to initialize)



Influenza Incidence Data

Near real-time estimates of influenza infection rates based on
online-search queries are available from Google Flu Trends (GFT)

For HHS (Health and Human Services) regions, the Center for
Disease Control (CDC) provides weekly surveillance records for the
proportion of doctor’s visits for influenza-like illness (ILI)

They also provide lab virology results for the percentage of
influenza positive samples

We combine these to get an estimate of influenza incidence to
compare with and incorporate in the model (ILI+)
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lllustrative Example — Retrospective Simulation

Results from the SIRS
model for Los Angeles
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-f“ y Data Assimilation and Forecast Ranges

Simple data assimilation with weighted sum of flu data (ILI+) and previous
model results used to re-initialize model

Pseudo-forecasts (in hindsight with observed humidity) run with different

ranges.
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Forecast Skill Measures

Mean absolute peak timing error as a function of forecast range.

Averaged over ensemble members and several locations (21 US cities) and seasons (2010-2014)

Here different curves are for simulations with different data assimilation weights
(eta=0 means flu observations ignored)
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Humidity Sources

Comparing simulations driven with humidity from AIRS and ECMWF ERA-Interim (everything else equal)
Averaged over several locations (21 US cities), here showing 2013-2014 season

Source and details of surface specific humidity data do not seem to be a dominant source of uncertainty,
but further characterization is needed

leak timig\g error, mean over cities, SIRS ensemble mean peak - analysis (0.2 IL

»—x AIRS
»—x  ERA-I

N

N

Mean Abs Error [days]
w

0 | | | | | |
1 2 3 4 5 6 7 8 9 10

Forecast Range [days]



2005-2015 seasons

Model performance can vary significantly with season

‘Out of season anomalies’ like 2009 swine-flu not expected to be captured
well by this ‘universal’ model
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Testing if Local Humidity Conditions
Really Drive Flu Seasonality

The red line shows simulation results with model driven by actual local
AIRS humidity observations

The blue line shows results when using the AIRS datasets but
permuting their location (so matching ILI+ data with model driven by
wrong humidity time series on purpose) -- significantly worse results
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Operational Forecasting System
Incorporating Humidity Forecasts

* Having evaluated the model, studying past seasons with available humidity observations,
we now incorporate NCEP forecasts for specific humidity

 Code modified to operationally produce forecasts on a regular basis

* Depending on data availability and lag time for reporting, we obtain and use a combination
of influenza incidence data, humidity observations and forecasts and previous results from
the SIRS model

 Onagiven day, for a given location, we acquire the latest influenza incidence reported
online and feed into the model, check for the most recent humidity observations (AIRS) to
initialize model calculations, and automatically acquire NCEP humidity forecasts for all the
days needed within a specified forecast range (like 1 or 2 weeks). All these datasets are
acquired and processed to a conformed format in an automated way. Output data from
simulations is collected, and ensemble statistics performed.

 Aversion of this system is now ready and working.

* Still need to make it more general/versatile to process and use different data sources,
time/space resolution, etc., and validate.



"(‘\5«9 Operational Forecasting System
Preliminary Results

Los Angeles, 2014-215 season
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Summary

We have developed a humidity driven (by AIRS near-surface humidity)
influenza model operating on a city, state or regional scale

It is a promising tool to inform about influenza seasonality, peak timing,
onset and relative intensity of outbreaks

Simulations of past seasons 2005-2015 performed for validation, using
observed (AIRS) humidity

Results provide support for the hypothesis that local humidity conditions
are a significant driver for the seasonality of influenza

Humidity forecasts incorporated along with AIRS humidity into forecasting
system, getting ready to run operationally



Future Work

Further establishing/verifying the environment-influenza link with AIRS and other data
sources (humidity, temperature, anomalies vs. absolute values, pollution?)

Further validation of the prediction system

Obtaining and incorporating more specific influenza incidence data from medical networks
and authorities and internet sources.

Developing confidence and uncertainty measures (including effects of AIRS humidity data
uncertainty)

Better constraining of parameters and methods that account for their variability and
uncertainty

Applying the system and comparing to other regions, outside US

Implementing and assessing longer term seasonal predictions (using climatology, maybe
longer term humidity predictions in the future)

Exploring different types of models, virus subtypes, population age structure, geographical
spread



