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pulsars: Nature’s precision clocks 
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Shapiro delay in PSR J1713 
as a function of orbital phase [Splaver et al. 2005]



Orbital period variation in B1913+16 
[Weisberg et al. 2010]

Tests of GR with B1534 
[Fonseca et al. 2014]



Red noise in PSR J1713 
ML red-noise realization [Zhu et al. 2015]



J1713 residuals 
daily averages after subtracting ML jitter and red noise [Zhu et al. 2015]
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The NANOGrav pulsars 
[McLaughlin 2013]

The NANOGrav 9-year dataset 
[NANOGrav 2015]



WEP	 Newton’s equivalence principle 
	 mI = mG 

EEP	 Einstein’s equivalence principle 
	 = WEP	 + local Lorentz invariance  
	 	    + local position invariance 
	 metric theories (what fields?) 

SEP	 EEP, but also for gravitational  
	 experiments 

Dicke: test of EPs + PPN tests of metric theories

Testing GR: the standard hierarchy of theories of gravitation
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the PPN formalism: metric and potentials



the PPN formalism: parameters
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...is predicted in virtually any metric theory of gravity that embodies 
Lorentz invariance, but it may differ from GR in: 

	 polarizations 
	 speed of waves 
	 radiation reaction 

Unfortunately, no simple, principled framework like PPN exists for 
describing radiative systems or systems containing strong internal 
fields. 

So we must consider individual alternative theories, or perform 
null tests of consistency.

Gravitational radiation...

(tested at low v 
with binary pulsars)



Naïve and sentimental tests of GR consistency

In order of difficulty and un-likelihood: 

• If we divide the waveform in segments, do individual SNRs pass a χ2 
test? 

• Is there a coherent residual? 
• What about the source parameters determined from each segment—are 

they consistent (within estimated errors) with the parameters determined 
from the entire waveform? 

• Is the shape of the likelihood surface consistent with what’s expected for 
this waveform family? 

• But before we suspect general relativity: 
instrument systematics, modeling, data 
analysis, physical environments…
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SNR in coherent burst analysis of 
data residual after subtracting 
best-fit GW150914 waveform



GW polarization and pulsar-timing array antenna patterns

Tensor

Scalar

Vector

Chamberlin and Siemens 2012



Pulsar-timing-array overlap reduction functions

Chamberlin and Siemens 2012



Speed of waves by dephasing in GW150914  
(in future systems with counterparts: compare with EM!)
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where M = (⌅3/5G�4/5)�3/5m, and b is the coe⇧cient of the dipole term, given by b =
(5/48)(⌅�1G4/3)⇤S2, where ⌅, G, S are given by Equations (94), and ⇤ = 1/(2 + ⇧BD). Double
neutron star systems are not promising because the small range of masses available near 1.4 M⇥
results in suppression of dipole radiation by symmetry. For black holes, s = 0.5 identically, con-
sequently double black hole systems turn out to be observationally identical in the two theories.
Thus mixed systems involving a neutron star and a black hole are preferred. However, a num-
ber of analyses of the capabilities of both ground-based and space-based (LISA) observatories
have shown that observing waves from neutron-star–black-hole inspirals is not likely to bound
scalar-tensor gravity at a level competitive with the Cassini bound or with future solar-system
improvements [283, 161, 236, 292, 27, 28].

6.4 Speed of gravitational waves

According to GR, in the limit in which the wavelength of gravitational waves is small compared
to the radius of curvature of the background spacetime, the waves propagate along null geodesics
of the background spacetime, i.e. they have the same speed c as light (in this section, we do not
set c = 1). In other theories, the speed could di⇥er from c because of coupling of gravitation to
“background” gravitational fields. For example, in the Rosen bimetric theory with a flat back-
ground metric �, gravitational waves follow null geodesics of �, while light follows null geodesics
of g (TEGP 10.1 [281]).

Another way in which the speed of gravitational waves could di⇥er from c is if gravitation were
propagated by a massive field (a massive graviton), in which case vg would be given by, in a local
inertial frame,
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where mg and E are the graviton rest mass and energy, respectively.
The simplest attempt to incorporate a massive graviton into general relativity in a ghost-free

manner su⇥ers from the so-called van Dam–Veltman–Zakharov (vDVZ) discontinuity [263, 299].
Because of the 3 additional helicity states available to the massive spin-2 graviton, the limit of
small graviton mass does not coincide with pure GR, and the predicted perihelion advance, for
example, violates experiment. A model theory by Visser [265] attempts to circumvent the vDVZ
problem by introducing a non-dynamical flat-background metric. This theory is truly continuous
with GR in the limit of vanishing graviton mass; on the other hand, its observational implications
have been only partially explored. Braneworld scenarios predict a tower or a continuum of massive
gravitons, and may avoid the vDVZ discontinuity, although the full details are still a work in
progress [91, 66].

The most obvious way to test this is to compare the arrival times of a gravitational wave and
an electromagnetic wave from the same event, e.g., a supernova. For a source at a distance D, the
resulting value of the di⇥erence 1� vg/c is
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where �t ⇤ �ta � (1 + Z)�te is the “time di⇥erence”, where �ta and �te are the di⇥erences in
arrival time and emission time of the two signals, respectively, and Z is the redshift of the source.
In many cases, �te is unknown, so that the best one can do is employ an upper bound on �te
based on observation or modelling. The result will then be a bound on 1� vg/c.

For a massive graviton, if the frequency of the gravitational waves is such that hf ⇧ mgc2,
where h is Planck’s constant, then vg/c ⌅ 1 � 1

2 (c/⇥gf)2, where ⇥g = h/mgc is the graviton

Living Reviews in Relativity
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Radiation reaction by waveform coefficients in GW150914 
and GW151226 (in NS binaries: dipolar radiation)
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For comparison: the timing of NS–NS pulsars allows accurate 
tests of GR in terms of easily interpreted parameters

24 I. H. Stairs

Parameter Value
Orbital period Pb (d) 0.322997462727(5)
Projected semi-major axis x (s) 2.341774(1)
Eccentricity e 0.6171338(4)
Longitude of periastron ⇥ (deg) 226.57518(4)
Epoch of periastron T0 (MJD) 46443.99588317(3)

Advance of periastron ⇥̇ (deg yr�1) 4.226607(7)
Gravitational redshift � (ms) 4.294(1)
Orbital period derivative (Ṗb)obs (10�12) �2.4211(14)

Table 2: Orbital parameters for PSR B1913+16 in the DD framework, taken from [144].

Figure 6: The parabola indicates the predicted accumulated shift in the time of periastron for
PSR B1913+16, caused by the decay of the orbit. The measured values of the epoch of periastron
are indicated by the data points. (From [144], courtesy Joel Weisberg.)

Living Reviews in Relativity (lrr-2003-5)
http://relativity.livingreviews.org

PSR B1913+16 
[Weisberg 2003]
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distance comes from the pulsar’s dispersion measure and a model of the free electron content of the
Galaxy [132], which together yield a value of 0.7± 0.2 kpc. If GR is the correct theory of gravity,
then the correction derived from this distance is inadequate, and the true distance can be found
by inverting the problem [17, 121]. The most recent value of the distance derived in this manner
is 1.02± 0.05 kpc [125]. (Note that the newer “NE2001” Galactic model [30] incorporates the GR-
derived distance to this pulsar and hence cannot be used in this case.) It is possible that, in the
long term, a timing or interferometric parallax may be found for this pulsar; this would alleviate
the Ṗb discrepancy. The GR-derived distance is in itself interesting, as it has led to revisions of
the predicted merger rate of double-neutron-star systems visible to gravitational-wave detectors
such as LIGO (see, e.g., [121, 7, 71]) – although recent calculations of merger rates determine the
most likely merger rates for particular population models and hence are less vulnerable to distance
uncertainties in any one system [74].

Figure 8: Mass–mass diagram for the PSR B1534+12 system. Labeled curves illustrate 68%
confidence ranges of the DD parameters listed in Table 3. The filled circle indicates the com-
ponent masses according to the DDGR solution. The kinematic correction for assumed distance
d = 0.7 ± 0.2 kpc has been subtracted from the observed value of Ṗb; the uncertainty on this
kinematic correction dominates the uncertainty of this curve. A slightly larger distance removes
the small apparent discrepancy between the observed and predicted values of this parameter. (Af-
ter [125].)

Despite the problematic correction to Ṗb, the other PK parameters for PSR B1534+12 are in
excellent agreement with each other and with the values predicted from the DDGR-derived masses.
An important point is that the three parameters ⇥̇, �, and s (shape of Shapiro delay) together
yield a test of GR to better than 1%, and that this particular test incorporates only “quasi-static”
strong-field e�ects. This provides a valuable complement to the mixed quasi-static and radiative
test derived from PSR B1913+16, as it separates the two sectors of the theory.
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PSR B1534+12 
[Stairs et al. 2002]
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4 Tests of GR – Strong-Field Gravity

The best-known uses of pulsars for testing the predictions of gravitational theories are those in
which the predicted strong-field e�ects are compared directly against observations. As essentially
point-like objects in strong gravitational fields, neutron stars in binary systems provide extraor-
dinarily clean tests of these predictions. This section will cover the relation between the “post-
Keplerian” timing parameters and strong-field e�ects, and then discuss the three binary systems
that yield complementary high-precision tests.

4.1 Post-Keplerian timing parameters

In any given theory of gravity, the post-Keplerian (PK) parameters can be written as functions of
the pulsar and companion star masses and the Keplerian parameters. As the two stellar masses
are the only unknowns in the description of the orbit, it follows that measurement of any two
PK parameters will yield the two masses, and that measurement of three or more PK parameters
will over-determine the problem and allow for self-consistency checks. It is this test for internal
consistency among the PK parameters that forms the basis of the classic tests of strong-field
gravity. It should be noted that the basic Keplerian orbital parameters are well-measured and can
e�ectively be treated as constants here.

In general relativity, the equations describing the PK parameters in terms of the stellar masses
are (see [33, 133, 43]):
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where s ⇥ sin i, M = m1+m2 and T⇥ ⇥ GM⇥/c3 = 4.925490947 µs. Other theories of gravity, such
as those with one or more scalar parameters in addition to a tensor component, will have somewhat
di�erent mass dependencies for these parameters. Some specific examples will be discussed in
Section 4.4 below.

4.2 The original system: PSR B1913+16

The prototypical double-neutron-star binary, PSR B1913+16, was discovered at the Arecibo Ob-
servatory [96] in 1974 [62]. Over nearly 30 years of timing, its system parameters have shown a
remarkable agreement with the predictions of GR, and in 1993 Hulse and Taylor received the Nobel
Prize in Physics for its discovery [61, 131]. In the highly eccentric 7.75-hour orbit, the two neutron
stars are separated by only 3.3 light-seconds and have velocities up to 400 km/s. This provides an
ideal laboratory for investigating strong-field gravity.

For PSR B1913+16, three PK parameters are well measured: the combined gravitational red-
shift and time dilation parameter �, the advance of periastron ⌅̇, and the derivative of the orbital
period, Ṗb. The orbital parameters for this pulsar, measured in the theory-independent “DD”
system, are listed in Table 2 [133, 144].
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