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A Merged CloudSat-GPM Coincidence Dataset
F.J. Turk, P. Partain, G. Liu, E. Nelson

±15-minute	time	coincidences	between	the	GPM	and	CloudSat	ground	tracks	

Utility	includes	algorithm	evaluation	and	identification	of	deficiencies,	snow	
and	light	rain	sensitivity	studies,	cloud	process	studies,	radiative	transfer	
simulations,	surface	effects	on	the	radar,	radiometer,	or	combined-sensor	
precipitation	retrieval	algorithms,	many	others….

Current	dataset	hosted	at	GSFC-PPS	and	currently	spans	the	period	between	8	
March	2014	- 1	December	2015.	Of	the	5144	coincidences	during	this	time,	
2579	had	CloudSat	data	available	(I.e.,	daytime	only).

Coincidence	files	are	in	HDF5	(10-15	MB	each),	with	three	quick-look		graphics		

Acknowledgments	to	Erich	Stocker	(PPS)	for	hosting	these	data	as	a	GPM	
product

https://storm.pps.eosdis.nasa.gov/storm/





	

	

9	March	2014
01:35:30	- 01:39:16
Near	25S	174W

6	of	the	13	GMI	channels	shown
885-km	GMI	swath

2B-GEOPROF	cross	section	under	
GMI	swath.		Trace	of	13	TB	
channels	arranged	in	frequency	
from	top	to	bottom	

CloudSat	subtrack245/120-km	DPR-Ku/Ka swath

10.65V
10.65H
etc...
183.3±7



	

9	March	2014
01:35:30	- 01:39:16
Near	25S	174W

Close-up	of	subset	
covering	the	DPR	swath

2B-GEOPROF

DPR-Ku

DPR-Ka

DPR-Ka high	sensitivity	

Trace	of	13	TB	channels



APR-3/COSMIR/MASC Analysis from OLYMPEx DC-8 
Clear-Sky Flight on 25 November 2015

8 September 2016, PMM Land Surface Group
J. Turk

With acknowledgements to R. Kroodsma (COSMIR), S. 
Padmanabhan (MASC), T. Lang (AMPR), S. Tanelli, S. 

Durden, O. Sy (APR-3)



http://olympex.atmos.washington.edu



http://olympex.atmos.washington.edu



DC-8 Instruments

APR-3 (Heritage Ku/Ka-band APR-2, with the added W-band)
9-km swath at 10-km flight altitude

MASC (Microwave Atmospheric Sounder on Cubesat) (8-ch)
183.31±1, 183.31±3, 183.31±7, 183.31±8, 118.75±1, 118.75±2, 118.75±7, 
118.75±8

COSMIR (9-ch)
50.3, 52.8, 89V, 89H, 165V, 165H, 183.31±1, 183.31±3, 183.31±7

Dropsondes (over ocean), 3-4 per flight

Many flight segments well-coordinated with ER-2 (not discussed for this time)

APR-3 sigma0 over ocean not shown here

http://olympex.atmos.washington.edu



25 November 2015    Clear-Sky Day    No ER-2
Lawn Mower Patterns
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COSMIR   Forward Simulations    Using 1822-1837 UTC Dropsonde
!! very preliminary, nowhere final, still checking absorption in RT code !!



segment 2 segment 3 segment 4

water sfc snowcoverno clouds – any radar

water sfc snowcover



water sfc snowcover

water sfc snowcover



Six Days Later: 1 December 2015    With ER-2





All APR-3 Flight Tracks (red) During OLYMPEX (Ku-band s0 in color)



Preliminary Analysis of Land Surface Backscatter from OLYMPEX
Joe Turk, JPL

APR3 data were only used when the column Zmax14 and Zmax35 < 20 
dB (crude no-precip screen)

The APR3 zenith angle is the incidence angle that each APR3 beam 
makes with the surface.  Since the DC-8 often banked rather tightly during 
OLYMPEX, this angle can exceed 60 degrees, but it never gets much 
below 3-degrees given the radar mounting and the typical aircraft pitch.   I 
only show up to 17-degrees to match with DPR.

The boxplots show 10, 25, 50, 75, 90 percent quintiles each angle bin

DPR data were taken during Nov-Dec 2015 for comparison, within the 
domain 46.9-48.5 latitude, -125.2 to -122.7 longitude region (1.5 deg x 2.5 
degree box).  Data with either the NS and MS precip flags set were 
excluded.

A common land/ocean mask was used for APR3 and DPR.  The mask is 
coarse (0.05 minute resolution) and coastal regions were excluded.  This 
allows the same land/ocean mask for each sensor, and forces the 
analysis to cover (almost) the same Earth surface locations.



APR-3



DPR



Why is this work needed?

• The information content within space-based precipitation radar/radiometer 
observations is insufficient to describe the environmental and surface 
state controlling the precipitation process physics.

• Retrieval process brings in a-priori simulations and ancillary data, in order 
to apply common physics across all platforms/sensors.  Places a heavy 
burden on the “realism” of the Z and TB simulations.

• For simulations the MW surface emissivity vector needs to be specified for 
each sensor type, alongside associated thermodynamic state.

• And for retrievals, some way of “connecting” to the properties used for 
creating each database profile

A-priori

TB
1, e1, R1

TB
2, e 2, R2

......
TB

N , e N , RN

TB
obs

Observations

“connect” surface and 
environmental conditions to 

corresponding conditions within 
the a-priori collection

Current GPM-GPROF does this 
thru a “classification index”



(Figure courtesy of Dr. Wes Berg, Colorado State Univ.)



3x3 DPR profiles 
surrounding each 

GMI

min-detectable 
cloud

cloud

Using DPR for Radiometer Scene Discrimination

4x4-km, 
250-m 
vertical

Z(Ku) < 15 dB  and
Z(Ka) < 15 dB  and
Z(Ka-HS) < 15 dB

(all bins)  è “no cloud”

N bins where Z(Ku) > 20 dB as a proxy for 
increased level of cloudiness and precipitation

N > 20  è “low probability”
N > 50  è “medium probability”

N > 100  è “high probability”

37-GHz 
resolution

increased likelihood 
cloudiness

cloud



Analysis Matched GMI/DPR Data 
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Extensive, diverse collection from 1+ year 
of GMI “no-cloud” emissivity vectors 
everywhere within ±65 degree latitude, 
without regard to the surface type

If there was some way to 
estimate each principal 
component from the 
observations, then the 
emissivity vector e could 
be approximately
reconstructed from the 
TB observations

Principal component analysis :

Assume nonlinear TB combinations and polarization 
ratios “carry” the information on the surface properties

+

Tsfc and total 
vapor added



TB-Reconstructed Emissivity State Vector

N=9 (10-89 GHz)
High water vapor over 
land underestimated

N=11 (10-166 GHz)
Improvement in over-
land total vapor with 
inclusion of 166 GHz 
channels

N=7 (19-85 GHz 
SSMIS)
SSMIS (no 10 GHz) 
dataset from 1-year of 
F17-GPM 15-min 
coincidences  

e36H                             Tsfc Total Vapor



3 PC-based discriminant, using 9-channels in the 
regression, is a good compromise, also since S2 
(166, 183 GHz) channels not always available

Discrimination Performance
N(Ku) > 20 dB in column

N>0 N>20 N>50 N>100
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GPM+CloudSat Coincidence
22 September 2014

Hudson Bay Land-Water

No clouds evident in 
all three DPR scans 

Trace of all 13 GMI 
channels

Simulated TB difference 
(using ECMWF) Near 
seamless land-coast-
water transition across 
all 9 GMI (S1) channels

Resultant emissivity at 
first 9 GMI (S1) 
channels

Hudson Bay

DPR NS

DPR MS

DPR HS

CloudSat
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GPM+CloudSat coincidence
20 February 2015

Alaska winter mountainous terrain

No clouds evident in 
all three DPR scans 

Trace of all 13 GMI 
channels

Simulated TB difference 
(using ECMWF) within 
10K across all 9 GMI 
(S1) channels

Resultant emissivity at 
first 9 GMI (S1) 
channels

DPR NS

DPR MS

DPR HS

Extension to 166 GHz 
being examined for very 
dry cold scenes

CloudSat

GMI



Observations
TB	10H
TB	89H
TB	166H

MRMS
1-hr	rain

Discrimination
(“no-cloud”)
90%	High
Confidence

Reduced
Confidence

12	months
1	May	2014	– 1	May	2015

Rain/Emissivity State Timeseries near a point:  West of Lubbock, TX, US

Soil type and scrub-like vegetation exhibit rapid rain response and dry-down



MERRA	Ts
ERA-I	Ts
Est.	Ts

MERRA	Tvap
ERA-I	Tvap
Est.	Tvap

Est.	e10H
Est.	e89H

MRMS
1-hr	rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence
Rain/Emissivity State Timeseries near a point:  West of Lubbock, TX, US



Observations
TB	10H
TB	89H
TB	166H

MRMS
1-hr	rain

Discrimination
(“no-cloud”)
90%	High
Confidence

Reduced
Confidence

12	months
1	May	2014	– 1	May	2015

Meghna River, Bangladesh, Seasonal Wetland (“Haor”)

Can also experience rapid emissivity change across inundated areas



MERRA	Ts
ERA-I	Ts
Est.	Ts

MERRA	Tvap
ERA-I	Tvap
Est.	Tvap

Est.	e10H
Est.	e89H

MRMS
1-hr	rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence
Meghna River, Bangladesh, Seasonal Wetland (“Haor”)



Observations
TB	10H
TB	89H
TB	166H

MRMS
1-hr	rain

Discrimination
(“no-cloud”)
90%	High
Confidence

Reduced
Confidence

12	months
1	May	2014	– 1	May	2015

Middle of Lake Superior, US/Canada

Inland Water Throughout Freeze-Thaw Conditions



MERRA	Ts
ERA-I	Ts
Est.	Ts

MERRA	Tvap
ERA-I	Tvap
Est.	Tvap

Est.	e10H
Est.	e89H

MRMS
1-hr	rain

Closed Circles= High Confidence, Open Circles= Reduced Confidence
Middle of Lake Superior, US/Canada



Applicability to Database Search: Example from Over-Ocean Warm SST

Gulf of Mexico
17 June 2014

DJF MAM
JJA SON

Associated co-variability 
in Tsfc and WV state 
variables

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3

Search for “nearby” 
entries in leading 
EOF-space:

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map

suggests possible alternate 
ways to index databases 
(transformation of variables)

Associated co-variability in 
emissivity



Applicability to Database Search: Example from Midlatitude Inland Water

Center of the 
Caspian Sea

17 March 2015

DJF MAM
JJA SON

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3

Search for “nearby” 
entries in leading 
EOF-space:

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map

suggests possible alternate 
ways to index databases 
(transformation of variables)

Associated co-variability 
in Tsfc and WV state 
variables

Associated co-variability in 
emissivity



Applicability to Database Search: Example from Bare Soil-Like, Daytime

West Texas
2 October 

2014

DJF MAM
JJA SON

Search for “nearby” 
entries in leading 
EOF-space:

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3

Throughout the process, the only time that latitude/longitude was ever 
consulted, was to plot the points on the map

Associated co-variability 
in Tsfc and WV state 
variables

Associated co-variability in 
emissivity



Applicability to Database Search: Snow Covered, Cold, Dry

NE Minnesota, 
snow-covered
1 March 2015

DJF MAM
JJA SON

Search for “nearby” 
entries in leading 
EOF-space:

!!
r = 1

N
[(uobs∑ −ui

sim)/σ i ]2 N =3

Associated co-variability 
in Tsfc and WV state 
variables

Associated co-variability in 
emissivityThroughout the process, the only time that latitude/longitude was ever 

consulted, was to plot the points on the map



Satellite	Remote	Sensing	of	Snowfall	
– Active	and	Passive	Sensing

Guosheng	Liu
Florida	State	University



CloudSat	Snowfall	
• CloudSat Radar: 94 GHz

From Ze to S

• Present Study:

• six idealized shapes (Liu, 2004)
• 3-,4-,5-,6-bullet rosettes
• sector
• dendrite

• size distributions from field obs
• Lo and Passarelli, 1982
• Braham, 1990

• random orientation
• DDA simulations for backscattering

Liu,	2008



Active Sensing of Global Snowfall From CloudSat Data

NP – 40°N

SP – 40°S

Rain+Snow Fraction Snow Fraction Mean Snowfall Rate
Reproduced	using	data	from	Liu	(2008)



Snowfall	“Climatology”

Mean	Zonal	occurrence	of	oceanic	
light	precipitation	(<1.0	mm/h)	as	a	
percentage	of	total	precipitation	
occurrence,	derived	from	COADS	ship-
borne	data	(1958-1991).  N. Hemisphere         Latitude          S. Hemisphere
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Occurrence	Frequency	and	Snowfall	rate,	
averaged	over	all	observations	of	
CloudSat from	2006	to	2010.



Use	combined	CloudSat/CPR	and	GPM/DPR	as	
“truth”

Based	on	collocated	CloudSat/CPR	-
GPM/DPR	data:	Mar.	2014	– Dec.	2015

DPR	misses	~90%	of	snowfall	pixels
~50%	of	snowfall	amount	

CloudSat:DPR =	36:100

Use	2BCSATGPM	dataset	of	Turk	(2015)	



Passive	Sensing	
- vast	amount	of	observational	data	so	far

Satellites sensors w/ high-freq microwave observations 

Satellite! Sensor! Launch Date !
NOAA-15 (K)! AMSU-B! 05/13/1998!
NOAA-16 (L)! AMSU-B! 09/21/2000!
NOAA-17 (M)! AMSU-B! 06/24/2002!
NOAA-18 (N)! MHS! 05/20/2005!
NOAA-19 (N')! MHS! 02/06/2009!
MetOP-A! MHS! 10/19/2006!
MetOP-B MHS 09/17/2012 

DMSP F16! SSMIS! 10/18/2003!
DMSP F17! SSMIS! 11/04/2006!
DMSP F18! SSMIS! 11/18/2009!
NPP! ATMS! 10/28/2011!
GMP GMI 02/27/2014 

AMSU-B: Advanced Microwave Sounder Unit – B 
MHS: Microwave Humidity Sounder 
SSMIS: Special Sensor Microwave Imager Sounder 
ATMS: Advanced Technology Microwave Sounder 
GMI: GPM Microwave Imager 

An	incomplete	list



Difficulties

• Signal	weak	– except	for	graupels,	snowflakes’	
signal	is	generally	<50K	for	any	channels

• Surface	contamination	– snow	cover,	etc
• Supercooled liquid	in	snowing	clouds
• (similar	to	active	sensing)	Complication	from	
particle	shape,	size	distribution,	etc.	



One	of	the	problems	in	detecting	snowfall	by	passive	
MW	observations	– supercooled	liquid

• Largest	TB	depression	does	
NOT	necessarily	correspond	to	
heavy	snowfall

• Why	?
Scattering	by	snowflakes	
competes	with	emission	
from	cloud	liquid.

• The	principle	to	detect	
snowfall	from	microwave	
obs.	is	to	use	TB	decrease	
caused	by	ice-scattering

Jan	22	2007	C3VP	case	w/CloudSat	Over	Pass	~	0700UTC



Radar-Trained	Passive	Microwave	Snowfall	
Algorithm	(CloudSat-MHS	Matchups)

- EOF	analysis	to	MHS	data:
- First	3	PCs	– 88.6%,	8.2%	and	2.1%	

of	variances
- PC3	had	the	best	correlation	Coeff

to	CloudSat	reflectivity
- Lookup	Table:

- Project	observed	TBs	to	the	first	3	
PCs

- In	the	3-d	EOF	space,	using	MHS-
CloudSat	matchups,	compute	the	
probability	of	snowfall	(CloudSat	
near-surface	dBZe>-15)	

- Lookup	tables	for	different	MHS	
viewing	angles

- Retrieve	snowfall	probability	using	the	
above	lookup	table;	Use	a	Z-S	relation,	
we	can	retrieve	snowfall	rate	as	well

40-65°N,	50-170°W
Land,	T2m<0°C
Viewing	angle	±10°

Liu&Seo,	2013



Apply	to	C3VP	Case	– 2007.1.22

The	look-up-table	
approach	successfully	
identified	snowfall	area



CloudSat-Trained	Passive	Microwave	Retrievals	–
U.S.

CloudSat
Averaged	over	4	years	
(2007-2010)

GMI
– trained	by	CloudSat&DPR
1	year	(2014.04	– 2015.03)

AMSU-B/MHS	(multi-satellites)
- trained	by	CloudSat
4	years	(2007-2010)



CloudSat-Trained	Passive	Microwave	Retrievals	

CloudSat
4	years	(2007-2010)

AMSU-B/MHS	
– trained	by	CloudSat
4	years	(2007-2010)

GMI	
– trained	by	CloudSat&DPR
1 year	(2014.04-2015.03)

NH

SH



Concluding	Remarks

• Separating	rain	and	snow	– a	better	algorithm	
than	just	using	T	or	wet-bulb	T;	Lapse	rate	
important

• A	first	of	global	snow	“climatology”	based	on	
CloudSat,	many	issues/problems	exist

• High-frequency	microwave	snowfall	retrievals	
possible;	need	separated	approach	for	land	or	
ocean


