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Immersion Grating Spectrometer with Quantum 
Capacitance Detector Readout

• Develop an immersion R~ 500 grating spectrometer 
using a readout based on a novel detector based on 
superconductor pair-breaking in mesoscopic
superconducting devices for the far-IR submm spectral 
range under very low levels of illumination.  We will 
demonstrate a fully multiplexed 256 spectral channel 
device  with shot noise limited detectors  for wavelength 
between 200 and 350 μm.
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The Quantum Capacitance Detector
• Radiation coupled by an antenna breaks Cooper pairs in the 

reservoir (absorber) establishing a density of 
quasiparticles(QP) proportional to the optical signal.

• QP density in reservoir set by the ratio of tunneling rates onto 
and out of the island. The  average QP occupation on the island 
(0<Podd <1) is proportional to optical power. 

• Bias at a peak, then average gate capacitance is a measure of 
optical power.

• Incorporate gate capacitor into a half-wave microwave 
resonator, changing C shifts readout frequency.   Naturally 
frequency-domain multiplexed.



Simulated response

• SCB capacitance x gate voltage (in units of  Cooper Pair charge) for 
various coupled optical signal power
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The Quantum Capacitance Detector
NEP as a function of optical signal
Photon shot noise limited!Response and noise as a function of 

optical signal

Shot noise of electron tunneling Total measured noise
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Improved measurement setup

• Added stack of three mesh filters at 
mixing chamber temperature

• Added Teflon filter before mixing 
chamber filter stack

• Added Teflon filter before still shield 
mesh filter

• Added mixing chamber shield -> no 
response from still temperature 
changes
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Future – grating spectrometer on a wafer

• Grating Spectrometer concept:  Facets on the grating arc both 
diffract and focus the radiation to locations on focal curve. 

• Each facet individually positioned to provide perfect 
performance at the two stigmatic frequencies.

• Longest interference path possible. 
• Eliminates the second dimension by confining the propagation 

makes for easy and efficient coupling to detectors.



Grating spectrometer on a wafer



Grating spectrometer on a wafer

• Redesigned wafer 
spectrometer with 
flat feeds

• Redesigned test 
fixture with 
waveguide transitions 
split in the middle



Grating spectrometer on a wafer
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Integrating Spectrometer and QCDs

• Original idea of having a detector wafer on top of silicon spectrometer is problematic
• Coupling between waveguide modes and QCD antenna difficult

• Obtain higher efficiencies by coupling directly to a mesh absorber
• QCD dies placed directly against spectrometer wafer facets



Integrating Spectrometer and QCDs



Spectrometer Readout Design



Spectrometer Readout Design



Lens coupled mesh absorber LEQCD



Lens coupled mesh absorber LEQCD



Lens coupled mesh absorber LEQCD
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• Averaging trace on scope and then taking the standard deviation 
• Random tunneling will cause the signal to average out

• Sweeping faster unpoison this sample => if we cross the degeneracy point in last 
time that it takes for a quasiparticle to tunnel due to background tunneling 
events, we don’t see those events anymore

• Photon hits yield temporarily extremely high tunneling rates and those events 
will be visible

How to filter out background tunneling
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• Raw QC time trace should be absolutely periodic
• Gaps are due to high tunneling in suppressing the qc signal
• Either due to background tunneling or photon hits
• Sweeping fast to suppress background tunneling

Measuring QC traces in a single time stream with fast sweep rate 



• From time traces calculated standard 
deviation of slices corresponding to 2 QC 
peaks (to avoid problems at the edge of 
sweep with e-shifts)

• Subtracted this trace from the maximum of 
the traces

• “gaps” in the qc will show up as peaks, i.e. 
background tunneling events or photon 
hits

• Do this for all blackbody temperatures
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• From the photon time traces, extract dwell time histograms – exponential decay corresponds to 
Poisson statistics

• Calculate probability of having N photons for a time interval 36ms
• Plot probability x number of photons; blue is measured, red Poisson statistics (no fit, just using 

measured average number of photons)
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SOMEWHAT HIGHER BLACK BODY TEMPERATURE
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SOMEWHAT HIGHER BLACK BODY TEMPERATURE
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Histogram of response for various black 
body temperatures
For cold black body only peak around 
0.25 exists
For hot black body peak around 0.6-0.7 
is larger than peak at 0.25
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Counts of response between 0.6 and 0.9 versus number of expected photons
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Subtracting the minimum count as a background rate
Averaging counts from histograms and counts extracted from 
dwell time histograms

Expected # of photons in 2.5 s interval
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Conclusion

• Stand alone QCDs shot noise limited and with reasonable efficiency
• Spectrometer on wafer with R ~ 600
• Demonstrated mesh absorber QCD shot noise limited and with good 

efficiency
• Designed and procured spectrometer holder fixture
• Designed Spectrometer Wafer, Mesh absorbers, QCD Readout Circuit
• Procured Photomask for fab
• SOI wafer for fab ordered
• Demonstrated Single Photon Counting at 1.5THz with Lumped Element 

Mesh absorber QCD
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