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Motivations

JPLU
* Rover mobility is highly sensitive to terrain type
Smooth Regolith
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Motivations

Manual terrain classification is very laborious
Landing site traversability analysis

— 8 candidate sites

— Each site has ~20km x 20km map

— 40K x 40K pixels on HiRISE!
Slip analysis

— 1K x 1K pixels for each NAVCAM image

— ~8K slip data for MSL
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Ongoing Projects

JPLUL .
@ SPOC-H (HiRISE) for M2020 landing site analysis
| * Provides dense predictions of 11 terrain classes on 25cm HiRISE
imagery
2 * Based on state-of-art fully-convolutional neural networks
#5 < Developed by Brandon Rothrock

SPOC-G (Ground) for MSL Operation

*  Works on NAVCAM images

* Visually identifies six terrain types: sand, cohesive soil, bedrock,
large rocks, rocks on outcrop, and wheel track

* Developed by Ryan Kennedy and Jeremie Papon

SPOC-R (Rover) for Topic R&TD on Next-Gen AutoNav

* Developing on-board variant of terrain classifier

e Currently identifying two classes: sand and anything else
* Being developed by Yumi Iwashita




Terrain Classification for HiRISE
JPL.

40km x 40km site (Mawrth)

~25cm / pixel from HiRISE



Fully-convolutional neural networks oL

“AlexNet” architecture for image classification on Image Net
(Krizhevski et al., 2012)
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Classification network as a detector
JPL.

Detection is commonly performed by running a classifier in a sliding-window fashion.

- Outputs: bbox
E Deep softmax regressor
~ ConvNet = ]
Rol FC FC

NE pooling
o Rol layer
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Sliding window for semantic segmentatio.rl\pl_




Fully-convolutional neural networks oL

End-to-end learning of network weights for semantic segmentation
(Long et al., 2015)
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Fully-convolutional neural networks oL

Classification network:

convolution fully connected
227 x 227 55 x 55 27 x 27 13 x13

Fully convolutional classification network:
convolution

o0

227 x 227 55 x 55 27 x 27 13 x183 1 x1




Fully-convolutional neural networks oL

Fully-convolutional network can now take arbitrary input sizes

convolution
H/4 x W/4 H/8 x W/8 H/16 x W/16 H/32 x W/32

Upsampling on last layer to get output dimension to match input

convolution

Dt P

H/4 x W/4  H/8 x W/8 H/16 x W/16 H/32 x W/32 Hx W




Terrain classification for HiRISE
JPL.

* Initial network consists of 22 convolutional layers.
* Front 16 |ayer WelghtS initialized from VGG16. (Simonyan and Zisserman, 2015)
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Jezero
JPL.

Learning neighboring context is important for many terrain morphologies




More Sites
JPL.

L ob

Eberswalde Mawrth



Ground Truth

Results

Table 2. Confusion matrix of classified terrain on Columbia Hills

Prediction
SR SO SRF RR RO SRS DLR PR

Smooth regolith gy 1.0% 0.0% 13.3% 00% 02% 0.0% 0.0%
Smooth outcrop 0.0% 0.0% 0.0% 04% 0.0% 0.0% 0.0%
Sparse ripples firm  0.6%  0.0% 0.0% 0.0% 0.6% 0.0% 0.0%
Rough regolith 121% 4.7%  0.0% 62% 1.1% 0.0% 0.2%
Rough outcrop 0.0% 0.0% 0.0% 0.6% 0.3% 0.0% 0.0%
Sparse ripples sandy  5.7%  0.9% 02% 1.5% @ 21.8% 7 0.0%  0.0%
Dense linear ripples  0.0%  0.0% 0.0% 0.0% 0.0%  0.0% 1.9%
Polygonal ripples 04%  0.0% 01% 1.0% 0.0% 0.3% 2.8% RIEY

JPL .

% of data
19.8%
5.4%
2.5%
11.8%
9.6%
20.8%
6.0%
24.1%

21



Talk Overview

SPOC-H: HiRISE-based Terrain Classification
(Rothrock)

SPOC-G: NAVCAM-based Terrain
Classification (Papon)

SPOC-R: On-board Terrain Classification
(lwashita)

Use cases: path planning with terrain classes
(Ono)

JPL .

22



Rover-based Terrain Classification oL

Motivation: The rover often slips while driving, especially on sand on
steep slopes.

Slip is (primarily) a function of (1) terrain type, and (2) slope
Risk-aware path planning should estimate the chance of dangerous
slipping, which requires knowledge of terrain type

Two applications:

— Off-board slip analysis for MSL

e Each day, Rover Planners (RP’s) plan a route for MSL to drive and
simulate it to ensure it is safe

e Currently, slip estimation uses models that were created using
Earth data and the terrain type must be manually chosen

— On-board classification for autonomous navigation

* Requires much more computationally-efficient classifiers

23



Dataset/Problem
JPL.

Trained on 650+ labeled images produced by an intern under the supervision of
Prof. Ray Arvidson and Amanda Steffy

10-point color scale. For now, we use 6 classes (5-point scale + wheel tracks)
Terrain classes:

— Green: sand

— Blue: small rocks

— Orange: large rocks

— Yellow: bedrock

— Red: outcrop

— Cyan: wheel tracks

* Wheel tracks have “texture” and are mistakenly classifier as rocks

24



Off-board approach JPL.

* Deep convolutional neural nets!
— Based on VGG networks from Oxford [Simonyan, 2015][Chen, 2015]

Raw Navcam

Likelihoods
S




Details...
JPL.

* Normalization is done by adjusting the image such that its median
intensity is 0.5
— Still problems with low-contrast image and shadows
* Projection
1. Using sparse 3D (X,Y,Z) data from stereo correspondence, fit ground plane

2. Find transformation so that image plane is parallel to ground plane
3. Transform image, scale so that there are X pixels per meter, cut off anything >30m

Right now, there are 9 meters per 1024 pixels, and the neural net has a receptive field size of 224 (?) pixels, or
2 meters

* C(lassification is done by cutting the image into tiles so that it fits in the
GPU’s memory, classifying each, re-tiling them back together, then “un-
projecting” the image

* Total time: ~10sec for classification (on a Titan X), ~1min for everything
(image conversions, writing to file, etc.)
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Annotation Tool

Label Overlay Opacity

NN N B
. 1 Green (sandy)
. 2 Green (sandy, small loose rocks)
. 3 Blue (sandy, small/medium rocks)
. 4 Blue (sandy, medium rocks)
D 5 Yellow (outcrop, small/medium rocks)
D 6 Yellow (outcrop, more rocks)
. 7 Orange (large rocks among small angular ro
. 8 Orange (more large rocks among small angt
. 9 Red (outcrop, large embedded angular rocks
. 10 Red (outcrop, more large embedded angul:

. Unknown/None
MSL Terrain Image Files
Red - No saved user annotations exist
Green - User has saved annotation

501341
-NLB_516549695
NLB_516550830
NLB_516551542
-01348
-NLB_517173026
-NLB_517174356
NLB_517175096
—NLB_517175525
E-01344
-NLB_516801700
—NLB_516802228
NLB_516802708
-NLB_516803001
-NLB_516810276
-NLB_516810300
B 576810820
NLB_516810850
-NLB_516810881
-NLB_516810912
-NLB_516810943
NLB_516811113
NLB_516811145
-NLB_516811169
-NLB 516811193

JPL.
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Hidden Valley (Sol 710)

B sand I smooth Outcrop

" Rocks B Rocks on outcrop

Terrain Classification Review/Demo




Dingo Gap (Sol 533)

B sand I smooth Outcrop

" Rocks B Rocks on outcrop

Terrain Classification Review/Demo




Namib Dune (Sol 1215)

B sand I smooth Outcrop

" Rocks B Rocks on outcrop

Terrain Classification Review/Demo




Ground Truth

Results
JPL.

Table 3. Confusion matrix of terrain classification on MSL Navcam imagery.

Prediction
Sand S. Rocks Bedrock L. Rocks Outcrop Tracks % of data
Sand 0.8% 1.7% 0.2% 2.4% 10.9%
S. Rocks BT 06%  7.0%  02%  0.02% [RNSEG6N

28.6% 0.3% 0.0% 7.7%
1.81% 38.3% 1.3%  0.02% 23.5%

Bedrock  9.9%
L. Rocks 1.1%

Outcrop  1.6% 0.0% 34.0% \ - 1.1% 2.2%
Tracks  0.7% 0.0%  09%  0.8% 1.1%
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Talk Overview
JPL.

e SPOC-H: HiRISE-based Terrain Classification
(Rothrock)

e SPOC-G: NAVCAM-based Terrain Classification
(Papon)

 SPOC-R: On-board Terrain Classification
(lwashita)

* Use cases: path planning with terrain classes
(Ono)

33



JPL .

M2020 Landing Site Analysis

34



Baseline Reference Scenario ‘@ Cafrns sitne o oy

Mars 2020 Project

The Baseline Reference Scenario (BRS) is a representative mission scenario that gives a
target for the design of the system and the mission.

* In 1.25 Mars Years, we will explore 2 Regions of Interest
— Each requiring 6 km of long traverse length to achieve
— Each requiring 1.5km of local traverse length to explore

Landing .
site ,

12 km of traverse between ROls

3 km of traverse inside the ROls

Pre-Decisional: For Planning and Discussion Purposes Only.



Jet Propulsion Laboratory
California Institute of Technology

M2020 Candidate Sites

Mars 2020 Project

(alphabetical order)
1- Columbia Hills (Gusev)

Black elevation mask > 0.5 km

S P ae Thermal Inertia masks:
g- .'{/?zen:h Elevation above MOLA Geoid (m) < 150 = Dark Gray

& NE Syrtis | - < 100 = Light Gray

7- Nili Fossae High: 4000 Low: -5000

8- SW Melas

36
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Jet Propulsion Laboratory
California Institute of Technology

Regions Of Interest (ROIs)

Mars 2020 Project

» Site proposers submitted ROIs specific to the exploration of that site
« Site proposers defined what ROls need to be visited for scientific success at
the site
« ROI definition and “must visit” set have a big impact on traverse requirements
at the site.
— Project science team to work with site proposers after project PDR to
refine ROIs and develop site specific mission scenarios

» Current evaluation is for visiting 2 ROls per site

North East Syrtis
Any Olivine-Carbonate formation (green)
&
Any of the Crater-Retaining Capping Mafic Rock (red)

Nili Fossae Trough
Olivine rich deposit (ROl #3)
&

Either #1 or #2
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MTTTT Overview (Planned) ‘@ Cafrns sitne o oy

Mars 2020 Project

Raw HIiRISE/CTX images

v v v v

Terraln classes DEM/Slope Rock abundance Manual traverasability ROls
Y ) ) ) assessment

Mobility Model

|

Traversability Analysis

& 0
uuuuuuuuuuuuu m

Mars 2020 Project-38
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Optimal Route Planning

Jet Propulsion Laboratory
California Institute of Technology

Mars 2020 Project

Example: Jezero

1096

1.094 -

1.092

109

1088

1086 -

1.084 -

¥ on el : o TS5 o R & - T W
4 588 4.8 4. 82 4. 594 4 Ba6 4. 548 46 4602 4 604
* [k x10%

Pre-Decisional: For Planning and Discussion Purposes Only.

Minimize time to
achieve the minimum
ROI requirement from a
given landing point

Driving speed estimated
from local terrain type,
rock abundance, and
slope (details on later
slides)

Optimal route computed
by the Sequential
Dijkstra algorithm

Online route planner at:
http://lorentz.jpl.nasa.qgo
v:5002/
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Optimal Route Planning

Jet Propulsion Laboratory
California Institute of Technology

Mars 2020 Project

Example: Jezero

o
] 10e -~
1.096 N
1.094 - 1 o
1.002 -
1.0 =
1.088 - d e
1085 _
1.084 b L) .
4 588 4.59 48532 4534 4896 4508 46 4602 4.604
* [k x10%

Pre-Decisional: For Planning and Discussion Purposes Only.

Minimize time to
achieve the minimum
ROI requirement from a
given landing point

Driving speed estimated
from local terrain type,
rock abundance, and
slope (details on later
slides)

Optimal route computed
by the Sequential
Dijkstra algorithm

Online route planner at:
http://lorentz.jpl.nasa.qgo
v:5002/
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Optimal Route Planning

Jet Propulsion Laboratory
California Institute of Technology

Mars 2020 Project

Example: Jezero

1096

1.094 -

1.092

109

1088

1086 -

1.084 -

¥ on el : o TS5 o R & - T W
4 588 4.8 4. 82 4. 594 4 Ba6 4. 548 46 4602 4 604
* [k x10%

Pre-Decisional: For Planning and Discussion Purposes Only.

Minimize time to
achieve the minimum
ROI requirement from a
given landing point

Driving speed estimated
from local terrain type,
rock abundance, and
slope (details on later
slides)

Optimal route computed
by the Sequential
Dijkstra algorithm

Online route planner at:
http://lorentz.jpl.nasa.qgo
v:5002/
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Monte-Carlo Simulation

Pre-Decisional: For Planning and Discussion Purposes Only.

Jet Propulsion Laboratory
California Institute of Technology

Mars 2020 Project

Landing points provided
by EDL team

16,000 samples are
provided; downsampled
to 2,000

Optimal route computed
from all samples

42



Cumulative Distribution of Distance

Jet Propulsion Laboratory
California Institute of Technology

 Generate CDFs for distance AND time

1

09

0s

07

06

05

04

03

0z

0.1

————————————— 50t percentile distance: 7.8 km
- 90t percentile distance: 11.2 km

Driving distance |km)
43

Pre-Decisional: For Planning and Discussion Purposes Only.



Jet Propulsion Laboratory
California Institute of Technology

Mobility model

Mars 2020 Project

« Maps terrain type, slope, and cfa to driving speed
» Used for the time-minimum route planning

Il Smooth regolith Jll Smooth outcrop
| Fractured outcrop

Slope Slope
: ﬂ
12 10°
Blind drive only

7% 15% CFA 15% CFA 50 m/sol

Crater Rock field

Dense linear ripples I Deep sand . Untraversable
Polygonal ripples [l Scarps

Slope

Sparse linear ripples Fast Autonav

80 m/hr

Slow Autonav
60 m/hr

Rough outcrop

Slope
20°

15% CFA CFA

Pre-Decisional: For Planning and Discussion Purposes Only.

44



Jet Propulsion Laboratory
California Institute of Technology

CDF (Time)

Mars 2020 Project

CurrentAutonayv
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Strategic Planning TOOI Jet Propulsion Laboratory

California Institute of Technology

ST " . Distance: 2.3§'k'm
) Duratien: 26.1 hrs
User drops s B,

waypoints

af

Name: Paella Valley - e

Order: 3 Y ¥
LR Activity: PIXL observations ' “' \
\ W : "
s AT b \ N 3
A ‘, . o 5 % . L}
» User can also
: define ROIs , ‘
TR . Name: Ramen Basin ¢
¢’ . el Order: 2 RO |
\ ' . Activity: collect 2 olivine
" ROl samples __ w3 V%
10" N N
. Name: Espresso Hills x g ' \ X
Y Order: 1 ! 9 5\
y Activity: SuperCam imaging of
7 the hills i
N :
) \
% \ '

-

Example on NE Syrtis. Colors represent terrain types identified by the automated terrain classifier.



Strategic Planning Tool ST e ey

Mars 2020 Project

k- . ! " O \l ‘ . - :
‘ AT . . Distance: 2.34 km
: b | /" Duratien: 26.1 hrs
; .7 N 3 : A : ,.‘t rt
N . ‘ ) \
\
L
R )
Algorithm i i
generates the : 2\
L8 time-optimal route __ Do
" ' i 3 v AL St
'. h Planned arrival: Sol 143
4 ROI R O
~ ‘ > K‘k

Name: Espresso Hills

Planned arrival: Sol 138 | o A
Cost: 246 m / 3.0 hrs

Traversability
assessed by terrain

5

Algorithm also provides the “marginal cost” of each

topology, terrain type,

and rock abundance waypoint —the extra distance/time to visit the waypoint

compare to the route that skips it but visits the rest.
Example on NE Syrtis. Colors represent terrain types identified by the automated terrain classifier.




Jet Propulsion Laboratory
California Institute of Technology

Constant Update of Traversability Assessment

Mars 2020 Project

« Adapts to new observations and updates traversability assessment throughout
the surface operation
« Learn from local observation and apply the updated knowledge globally
— E.g., If a new hazardous terrain type is observed from rover imageries,
identify the regions that have similar terrain features on HiRISE and update
the traversability assessment of the regions

* Re-train classifier
* Update traversability

. assessment o E t )
g « Update route . Extrapolate
(2  hazards \
: \\ identified — o
‘ . hazardyg '
JRY, &
y | Updated
QOriginal i
route’ ,
Unexpected terrain observed by rover Updated strategic route

Pre-Decisional: For Planning and Discussion Purposes Only.



JPL .

MSL Slip Analysis & Prediction

49
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* Slip model used in RSVP is extrapolated from Earth-based
experiments

— The model consists of slip curves for three terrain types

 There are ~8,000 slip data of Curiosity in EVR but have not been

used for statistical analysis because manually correlating them
with terrain is time consuming

 Question: How well the Earth-based slip model extrapolates to

Cohesive Sand Loose Sand
1.00 1.0
B D e e G
0.80 0.80
070 070
S 0.60 . beo
¥ 0% £ o
7 040 5 040
030 o
20 020
10 0.1
o0 )
0.00 500 10.00 15.00 20.00 25.00 20.00 O 1 15.00 0.00 k¥
Slope (deg) Slope (deg)
28 Jan 2016

Terrain Classification Review/Demo 50



. . i A
Objective/Approach et

Obijective: <4
 Statistically obtain slip curves from EVR m

the EVR data .
« Compare with the Earth-based g:f . NAVCAM imgs

model Pe
Approach:
* From EVR, extract a VO arc on , >

which both slope and slip are gltAtY]Ziw me

recoded P

— Find the NAVCAM image that | Slip/Slope Terrain type|

best captures the terrain at the

arc

— Run the terrain classifier on the

NAVCAM image to identify

terrain type
* For each terrain type, run

regression between slope and slip

28 Jan 2016

1

Sand

Slip

Terrain Classificatio

h Review/Demo

Slop;

Q-Ak
7]

Soil

Slip curves by terrain type

o 4
[

| Bedrock

Slope

Slopél




MA!
» LABORATORY ¢

For a given arc, estimates the footprint on the ground
Automatically finds the best NAVCAM image from PDR that best captures the
footprint

Sol: 735 Imgval: 447 Sol: 735 Imgval: 1036

. |

Sol: 735 Imgval: 1030 " sol: 735 Imgval: 1029 Orbital Image




W% Visual Classifier

)<

Raw Navcam

[Chen,2015]



Slip Regression

Loose Sand 100(_:ohesive Sand/Pebbles

Slip Percentage
Slip Percentage
Slip Percentage

0 10 20 30 30

Slope in Degrees Slope in Degrees Slope in Degrees
Large Rocks Outcrop
100 100
g ¢ 80
3 3 -
c S 60| M Curiosity Data
v o GP Regression Fit
o @ 40| -
o o M Earth-calibrated Model
a & 20|
. 0 't , ,
30 0 1 30

0 0 20
281202016 glope in Degrees Terrain Cofi@ i Delreas e



RSVP Slip Check
Ip ecker

* Predicts slip of planned paths based on terrain type and
slope

* Provides a warning if planned path may result in
excessive slip

e Replaces current slip checker in RSVP that requires
choosing terrain type manually

28 Jan 2016 Terrain Classification Review/Demo 55



Conclusions
JPL.

Developed CNN-based terrain classifier that
works on

— Full-resolution HiRISE images
— NAVCAM images

Used by the M2020 project for landing site
analysis and selection

Will be deployed on MSL operation in late
March

On-board version is being developed
Aiming for on-board infusion
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