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The Dawn mission
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Dawn's Journey

Vesta Arrival
(2011)

Launch
(2007)

Ceres Arrival
(March 2015)

Vesta Departure
(2012)

Mars flyby



4AIAA Space, 2016

Science Orbits

Ceres
470 km mean radius, 

Rotation period 9.1 hrs

Survey
• 4900 km radius, 75 hrs, 7 

orbits (22 days)
• Nadir mapping, limb 

observations

HAMO
• 1950 km radius, 19 hrs, 6x14 

orbits (56 days)
• Nadir and fixed off-nadir 

mapping

LAMO
• 850km radius, 5.4 hrs, 404 

orbits (92 days) *plan
• Mapping gravity field & 

elemental composition 
(GRaND)

Rotation Characterization 3 (RC3)
• 14,000 km radius, 15 days, 1 

orbit
• Nadir rotation movies, high 

phase observations
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Planetary Protection

• Category runs from I through V
– Higher the number, the more stringent the requirements

• Vesta and Ceres are category II target bodies
– Mission type: any
– Of significant interest relative to the process of chemical evolution
– A remote chance that contamination would compromise future 

investigations

• Mars flyby component of the mission makes the Dawn a 
category III mission
– Mission type: flyby or orbiter
– Of significant interest relative to the process of chemical evolution 

and/or the origin of life
– A significant chance that contamination would compromise future 

investigations and scientific opinion
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Goal

• Make sure that Dawn does not impact Ceres for at least 20 years after 
the end of mission, based on the worst-case credible gravity field
– The analysis is mostly done pre-Dawn arrival
– The Hubble images were the best observations we had
– What is the worst-case credible gravity field?

• If Ceres is found biologically interesting 
– The 20-year requirement becomes a minimum
– The lifetime requirement becomes 50 years or more

• The project decided to pursue the 50-year requirement for the 
planetary protection analysis
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Which one is the real Ceres?

Missing Pole (Vesta Like)

Pimples?

Pole

Tri Lobe

HST image
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Pre-arrival HST model

• Pre-Dawn arrival analysis with HST data
– Axi-symmetric shape 
– Two-layer (core - surface) model
– Hydrostatic equilibrium inside Ceres

Source: Rambaux et al., A&A, Volume 584, 2015, Third-order development of shape, gravity, and 
moment of inertia for highly flattened celestial bodies. Application to Ceres. 
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Sensitivity Study
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Sensitivity Study

• We perturb harmonic coefficients to understand their 
sensitivity to the long-term orbit propagation in LAMO
– GM is from Baer et. al (2011)
– The nominal harmonic values are supplied by the project science 

team

– The 1-sigma uncertainties are provided by the injection 
covariance into RC3 (i.e., largest science orbit)

– We initially tested 1000 samples
– The initial conditions are circular orbit and the same for all 

samples
– This analysis is a numerical, non-linear orbital propagation

Spherical harmonics
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Sensitivity Study

Nominal J3 and J4 values

• Clear correlation between J3 and J4
• J2 also has sensitivity
• Impacting trajectories have high eccentricity 

Green: Success
Red: Impact
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Sensitivity Study

J2 = 0.5*J2Nom J2 = J2Nom

J2 = 2*J2Nom

• Larger J2 has a stabilizing effect
• Most of the impacting cases impact within 

tens of days and less than 100 days at most

Days to impact
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Sensitivity Study

• Eccentricity is small
• Use semi-equinoctial elements
• dh/dt and dk/dt become functions of 

inclination functions
• The previous slides can be 

reproduced for different Jn values

• We can reproduce the same results analytically
– To first order, the argument of periapse and eccentricity follow the 

equations below: 
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Non-impacting trajectory

• AP: 180∘ 90∘ 0∘ 180∘…
• Eccentricity: 0  0.4  0  0.4  ...

e

AP AP = 90∘AP > 90∘ AP < 90∘
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Sensitivity Study

• J3 and J4 values are different only by 1e-7
• Altitude drops to 20 km when e ~ 0.4
• Impacting cases remain > 90∘ for AP and eccentricity keeps growing

J3 = -0.002243, J4 = -0.003243 J3 = -0.0022431, J4 = -0.0032431

e

AP AP = 90∘AP > 90∘ AP > 90∘AP < 90∘AP > 90∘ AP = 90∘

Survives Impacts



16AIAA Space, 2016

Impacting case

• Orbit propagation video of STK (impact)
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Non-impacting case

• Orbit propagation video of STK (surviving case)
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Gravity from Shape Model
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Gravity from Shape Model

• We now understand that J2, J3, and J4 are the key 
parameters for long-term orbit propagation

• What kind of Ceres might possess a gravity that results in 
impact?
– We can generate a gravity field from a shape model and assumed 

density distribution
– We can generate many samples to get statistics

• We look at 
– Direct expansion model
– Gravity Monte Carlo
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Direct Expansion Model
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Direct Expansion Model

• Gravity field models with science inputs
• Direct expansion model seeks a stressed case where the 

shape is strongly perturbed
– Constraints on the flattening based on Hubble
– Constraints on the overall shape based on HST data and 

hydrostatic equilibrium

• The density distribution model is a radially stratified two-
layer model
– Rocky core:  𝜌𝜌core = 2700 kg/m3, rmean, core = 409.1 km
– Icy layer: 𝜌𝜌ice = 1000 kg/m3, rmean, ice = 476.2 km 
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Direct Expansion Model

• Direct expansion models do not threaten planetary protection 



23AIAA Space, 2016

Gravity Monte Carlo
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Gravity Monte Carlo

• Nav internal gravity field
– Constraints not imposed from the Hubble observations

• Statistics of the gravity fields are sought after
– Kaula rule

– Shape deformation and density variation
• Core – icy layer model
• The surface vertex is modulated with 12-km amplitude perturbation (2-

sigma of Hubble observations)
• Frequency = 50 km ~ 100 km
• 75000 samples are generated
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Gravity Monte Carlo

• Kaula uncertainty > Gravity Monte Carlo uncertainty
– It is very challenging to perturb the shape and density distribution 

enough to see substantial differences in the gravity field
– We know that Kaula rule is very conservative (i.e., large) for lower-

degree harmonics

• Orbital sensitivity study used larger uncertainty for all 
harmonics but J2
– Orbital sensitivity analysis is conservative
– The impacting cases are likely to have resulted from aphysical gravity 

field
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Hand-picked pre-arrival best Ceres 
gravity model
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CBE Ceres Gravity

• Members of Nav and science teams gather to choose the 
mean and 1-sigma uncertainty for each degree and order 
harmonics
– 6x6 current best estimate (CBE) Ceres gravity model
– No correlations are assumed, which results in a more conservative 

gravity field
• Orbital propagation is rerun for 50 years

– 10000 trajectory samples are generated
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CBE Ceres Gravity

• None of the Monte Carlo samples impacted Ceres within 50 years.
Eccentricity Radius

• Mean radius of Ceres is 470 km
• Impact occurs at e = 0.4
• The red lines are the 3-sigma lines



29AIAA Space, 2016

Gravity field with updated shape model
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Gravity with updated shape model

• Dawn’s images exceeded Hubble images by late January, 
2015 

• Opnav team constructed a new shape model
• In March 2015, the gravity Monte Carlo was rerun with the 

updated shape model
• At this time Dawn was in Survey (~5000 km radius)

– J2 = 7.6e-3 ± 9e-4
– J3 and J4 were unobservable
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Gravity with updated shape model

• Pre-arrival statistics encompass 
post-arrival statistics at 2-sigma level

Blue: CBE (pre-arrival)
Red: Post-arrival
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CBE vs HAMO gravity field
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CBE vs HAMO gravity field

• Prior to descending into LAMO, the estimated values of the 
spherical harmonics in HAMO and their uncertainties are 
compared against CBE gravity field
– They agree within 3-sigma
– They are well within the no-impact region of the butterfly plot 
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Conclusion



35AIAA Space, 2016

Conclusion

• We have identified sensitivity of long-term orbit 
propagation to J2, J3, and J4

• If the argument of perigee does not drop below 90∘, the 
eccentricity keeps growing

• All impacts occur within < 100 days
• We have shown that the LAMO orbit does not threaten 

the planetary protection requirement with 
– Pre-arrival Hubble data
– Post-arrival Dawn data
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Questions?
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Backup
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Dawn Flight System Configuration

HGA   
(X-band)

Ion propulsion system 
thrusters (2 obscured in 
this view; all 3 in x-z 
plane)

Solar arrays 
(articulable around y)

Framing
Cameras
(FCs)

Visible and infrared 
mapping 
spectrometer
(VIR)

Gamma ray and 
neutron 
spectrometer
(GRaND)

19.7 m

LGAs          
(all X-band)z

yx
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Dawn Navigation Team

Navigation

Optical 
Navigation

Orbit 
Determination

Maneuver
Design

• Process images
• Generate surface 

"landmarks"
• Estimate pole 

orientation and 
spin rate

• Process optical, 
radiometric, and 
DDOR data

• Estimate bias, 
stochastic, and 
state parameters

• Map uncertainty 
forward in time

• Use state and 
parameter 
estimations from 
OD

• Produce low-
thrust vectors for 
maneuvers
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Gravity Monte Carlo

• Shell: a,b = 480 – 492km, c = 450 – 462 km 
(base: a = b = 480km, c = 450km)

• Core: a,b,c = 380 – 420 km
• Density:

– Shell = 1.0 g/cm3

– Core = 2.7 – 2.95 g/cm3

• Topology perturbation 
– Shell flattening: ab: < 0.05, ac, bc: 0.05 – 0.08
– Core flattening: ab: < 0.01, ac, bc: 0.025 – 0.08
– Amplitude = ~12 km (combination of low frequency + high frequency, 

one sigma)
– Frequency = 50 km ~ 100 km
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Pre-arrival HST model

• Pre-Dawn arrival analysis with HST data
– Axi-symmetric shape 
– Two-layer (core - surface) model
– Hydrostatic equilibrium inside Ceres

Source: Rambaux et al., A&A, Volume 584, 2015, Third-order development of shape, gravity, and 
moment of inertia for highly flattened celestial bodies. Application to Ceres. 
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Pre-arrival HST model

Parameter Value
a 487.218 km
b 487.218 km
c 454.164 km
acore 418.585 km
bcore 418.585 km
ccore 390.187 km
Rice, mean 476.2 km
Rcore, mean 409.1 km
𝜌𝜌ice 1000 kg/m3

𝜌𝜌core 2700 kg/m3

𝜌𝜌mean 2078.3 kg/m3

Baseline model

a, b, c = dimensions of 
an ellipsoid
R = radius
𝜌𝜌 = density
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Sensitivity Study

• Gravity field sample statistics

Nominal 1-sigma
GM (km3/s2) 63.13 0.0135

J2 0.00940 0.0016

J3 0 0.0209

J4 -0.000316 0.0075

J5 0 0.0005

J6 0.0000305 0.00015
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Direct Expansion Model

CERES-T1 CERES-T2 CERES-T3 CERES-T4 CERES-T5
T20 rmean (km) -21.53 -21.53 -21.53 -21.53 -21.53

T20c rmean
(km)

-18.5 -18.5 -18.5 -18.5 18.5

T30 rmean (km) 3.4 -3.4
T33c rmean

(km)
0.3 0.8

J2 1.01 x 10-2 1.02 x 10-2 1.02 x 10-2 1.01 x 10-2 1.01 x 10-2
J3 -5.23 x 10-4 5.23 x 10-4
C33 -7.71 x 10-4 -2.32 x 10-3
Js -2.39 x 10-4 -2.41 x 10-4 -2.60 x 10-4 -2.41 x 10-4 -2.41 x 10-4
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Gravity Monte Carlo

• Kaula uncertainty > Gravity Monte Carlo uncertainty
– It is very challenging to perturb the shape and density distribution enough to see 

substantial differences in the gravity field
– We know that Kaula rule is very conservative (i.e., large) for lower-degree 

harmonics
• Orbital sensitivity study used larger uncertainty for all harmonics but J2

– Orbital sensitivity analysis is conservative
– The impacting cases are likely to have resulted from aphysical gravity field

Degree Kaula rule for each degree 
(1-sigma)

Maximum coefficient 
uncertainty for each degree

(1-sigma)
2 2e-3 1e-3
3 1e-3 8e-4
4 5e-4 1.5e-4
5 3e-4 1e-4
6 2e-4 1e-4
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CBE Ceres Gravity

Coefficient Mean
(1-sigma)

Uncertainty
(1-sigma)

J2 9e-3 1e-3
Other 2nd-degree terms 0 1e-3

J3 0 3e-4
Other 3rd-degree terms 0 3e-4, except 𝜎𝜎C33 = 8e-4

J4 -3.2e-4 1.5e-4
Other 4th-degree terms 0 1e-4

J5 3e-5 1e-4
Other 5th-degree terms 0 1e-4
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CBE vs HAMO gravity field

• Prior to descending into LAMO, the estimated values of the 
spherical harmonics in HAMO and their uncertainties are 
compared against CBE gravity field
– They agree within 3-sigma
– They are well within the no-impact region of the butterfly plot 

CBE Value CBE 1-sigma 
uncertainty

HAMO Value HAMO 1-sigma 
uncertainty

J2 9.4e-3 1e-3 1.1506e-2 1e-6

J3 0.0 3e-4 -4.96e-5 1.4e-6
J4 -3.16e-4 1.5e-4 -5.25e-4 3e-6
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