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Background JPL

parts Lab

Mars Science Lab landing

Planetary Ascent, Entry,
Descent, Landing and
Rendezvous requires a
wide range of models

* Planetary bodies

» Orbital mechanics

o Gravity
e Aerodynamics (EDL) a
« Inertial sensing (IMU) DSENDS Used for
 Surface sensing (altimeter, RADAR) NASA Missions:
e Thrusters * MER
e Fuel tanks and manifolds * L=
* Phoenix

* Deployment/separation mechanisms

o 2020, Insight, etc
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DARTS Lab Multi-Domain Simulations oy

Darts Lab

Flight Dynamics
(DSENDS)

Precision
Landing
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DARTS Lab Simulation Architecture jpi

Darts Lab

Molecular dyn. Embedded models
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DSENDS Framework



Framework: Frames JPL

Darts Lab

Frame (location of interest)

Frame = |location +
coordinate system

All frames in a
“Frame Tree” Visualization

Act/sensors
(nodes)

(camera,
Simplifies all &™)
relative Flanetary z‘;g‘es $/C bodies
pos/vel/accel Terrain
calculations centre

Smart caching and
lazy evaluation to
Improve efficiency



DARTS Multibody Dynamics Solver joi
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* Rigid/flexible
bodies

« Connected
by hinges

e Supports tree
and closed
loop
topologies,
contact
dynamics

BODIES: have mass and may be flexible

/1N

Suw)e !

NODES: locations on bodies HINGES: connect bodies in
where forces may be a tree topology with
applied and dynamics many options for
properties computed hinge types




Framework: Dshell Models and Signals yo_

parts Lab

C User can write
° +-4 ! .
; to signals

o Partially auto-

Signal
coded l
» Parameterized
I t
models e —» Input
e Connected by Model Model
“signals” into a .
Iput " —
dataflow pHt Slgnal Output

e Users can read ;
or write signals User can read
signals



Framework: Assemblies JPL

Darts Lab
« Assembly:
Container with SunPosition
. DSENDS
recipe for < ooty
constructing sub-
GNC Navigation
system of models, Software — (model)

. aceCraft uelManifo
signals, and other Speceer e e
Su b'SyStemS FuelTank 1

SpaceCraft2 Baseﬁody FuelTank N
 Knows how to set
up, configure, and ThrusterSet M
parameterize its Sensors Grm /\
components /\ hrustery * Thruster N
o Re'usable SunSensor

Testable



Framework: DVar for data access o

e DVar provides access to all data in the
simulation
— Multibody data
— Signals
— Model data
— Frames
— Etc

« Data Is available through live DVar
objects or dot-notation paths

o Simplifies logging, stripcharting



Framework: SimScape Terrain Models yoy

Darts Lab

 SimScape: Tool to

 Process terrain
data from a variety
of sources

e Use terrain data in
simulations

LIDAR

Ranging
devices

e

FARBTRY g
Synthetic Analytical

Camera
Images of
surfaces

Landing events



Framework: Geometry JPL

Darts Lab
e DScene =
Geometry
.. Dspace
dESCI’IptIOnS visualljization
 Bodies
] DBullet
e Terrain collision
DScene detector
 Used for Geometry
. L Manager BlenderS
. Visualization i
(Dspace) :
s Easy to add new client TR
* Collisions services as needed ray tracer
(DBullet) .
elc.
 Add new client
Services as

needed



Framework: Infrastructure JPL
« Multibody, Models,

Frames, etc, run in C++ -

for speed t
e Use SWIG to “wrap” C++

for Python access -
e Setup, parameterization,

In Python ‘t SWIG

o Simplifies validation and
regression testing




Applications of DSENDS



COMPASS JPL

« JPL and Johnson Space Center (JSC) Flight
Dynamics Division (FDD) within the Flight
Operations Directorate (FOD) have been
collaborating on DSENDS for over 5 years

e JSC FOD is using DSENDS as the basis for
COMPASS to support flight operations

« COMPASS is being applied for International
Space Station and future manned exploration
mission simulations



Mars Science Laboratory (MSL) oL

« DSENDS was used to support MSL
Entry Decent and Landing (EDL)
operations.

— Independent verification and validation of
orimary simulation tool POST2 (from
_angley Research Center)

— Supported development of robust closed-
loop entry guidance navigation and control
for precision landing

— Used to ensure successful landing within
planned landing envelope




Mars Science Laboratory
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DSENDS (Blue) vs POST2 (Red)
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Phoenix and Insight Missins JPL

« DSENDS used for
— maneuver design
— landing dispersion analysis
— trajectory targeting



Phoenix EDL Timeline JPL

Communications: UHF-band to Orbiters

- Final EDL Parameter Update: E-3hr, Entry State Initialization: E-10min

§ = Cruise Stage Separation: E-7min
#i ) ge Sepa Entry Prep
' p = Entry Turn Starts: E-6.5 min. Turn completed by E-Smin.
4 Entry: r=3522.2 km, 5.6 km/s, v = -13.0 deg
‘,_,/’ - Peak Heating: 46 W/cm? Peak Deceleration: 9 H}prl‘SUI‘IiC
o Parachute Deployment E+219s, ~13 km, Mach 1 65
= Heat Shield Jettison: E+2345, ~11.0 km, 119 m/s
\
L P - Leg Deployments: E+244s Parachute
-’ \ - Radar Activated: E+294s
= Lander Separation: E+3915, ~0.2 km, 55 m/s
Landing at ﬂ P ]
3 71tc -5.0km \ - Throttle Up: E+394s, ~0.71 km Terminal Descent
Elevation (MOLA Jo—— > - Constant Velocity Start E+413s, 0.041 km
- —_— b
relative) . *
= = 5

—_—

= Fire Pyros for Deployments: L+5s
"\ Fire Pyros for Deploym o

=2 Begin Gyro-Compassing: L+75min

Mote: Information in this graphic i1s approximate and not as-flown. 17 May 2007

- Solar Aray Deploy: L+15min \\._\Mil

= Touchdown: E+425s, 0 km, Vv=24 +1 m/s, Vh=1.4m/s
= Dust Settling: L+0 to L+13min Lander PTEP \
1




Insight Navigation Targeting JPL

Darts Lab
MONTE
Critical plane DSENDS Entry
Yes »| targeting at TCM-1 Calculate new d?;:ee
to entry time, entry time, Smaﬁ..,
B-plane angle, b-plane angle )
flight path angle
T (i.e. more details on next slide) No
MONTE 4. Final trajectory targeted to
biased aimpoints at kundch, then
Determine 1o entry at TOM1
new targets to .
hit aimpoint No ;&mm —— Targets: BT, B.R, TCA

Optimal
launch

Yes time?

Targets Radiuy, FPA,
B-plane angle

1. Trajectory from TIP 2. Crivical plane tiget-
TIPTOP @ laruding site Ing 8t TOM1 1o AT AR il
————>| Generate TIP time | |
and state ! |
A J'

Fixed Aimpoint /
Initial guess for targets
Initial guess for entry state T4 et
Landing Site Graphic Credit: Julie Kangas. p'm"?,'_
DSENDS template Elligrse




Latitude (deg)

Insight Landing Hazard Assesment o

Darts Lab

InSight LP Open, 0od004_v1, EFPA=-12.687 deg,MKB,TCM-6 (No Burn)

" 97%
" Success.Contour

134.4 134.8 135.2 135.6 136
Longitugle (deg)

TCM-6 (no Burn) Ellipse
88X23 km

Azimuth: 78.24 deg
Center: Lat 4.317 deg, Lon:135.55 deg
Success Probability: 98.93 %

E90 Target (4.46, 135.97 deg)

136.4 36.8

TCM-6 (with Burn)

Ellipse: 111X24 km

Azimuth: 78.72 deg

Center: Lat 4.448 deg, Lon 135.90 deg
Success Probability: 99.27 %




LDSD / SIAD Testing JPL

« Aerodynamic decelerator technology
development for supporting large payloads for
future Mars missions

— LDSD = Low-Density Supersonic Decelerators
— SIAD = Supersonic Inflatable Aerodynamic
Decelerators

e Tested at high Earth altitudes to simulate Mars
entry conditions

« DSENDS used as primary tool for flight planning
and operations



LDSD / SIAD Flight Profile JPL

180,000 ? c
Test Perlod 0, m
s
L o PDD Deploy, \
/
= o7 SIAD Deploy 5SDS Deploy 3
Q Burn out / e V
120,200 _aunel Despin " >
__________ M | Spin-Up and P PDD Release 2
I 1_1 8_,660 _____ Y | Ignition N
1
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[ 1
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) Nominal Flight: ~25-75 nautical miles >
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2014 JUN 15 22:01:45.250 Nominal Trajectory Event Timing (sec):

Elapsed Simulation Time (secs.)
Cruise Segment

Parame re
Parameters:

Hel. Azm From North (deg)
Mach (=)

Dynamic Pressure (N/m"2 SIAD_Deployed . 79.49

G-Load (gees)

Vehicle Parameters:

Mass (kg) : 1373.161

Total Angle of Attack - 2.412

Pitch (deg) - - .614

Azm From North (deg - 28 .549 !
X-axis Body Rate (deg/ ) - 3.812 " "

Y-axis Body Rate (deg/sec) : .038 0%

Hiaxis BodREte (deg/ : -G_Q{A?.
s st ; 0.000

fUel Remaining (kg) : A, 636

NEXT EVENT: Trigger_PDD

TIME TO NEXT EVENT: 3.25
The SIAD is deployed creating a 6m

diameter forebody while dynamic behavior
is monitored

Movie Playback Speed: 1X Real Time




Asteroid Redirect Robotic Mission o
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e DSENDS used to

— Test and develop early Asteroid Redirect
Robotic Mission (ARRM) mission concept for
capturing a small asteroid

— Part of real-time testbed to emulate zero
gravity









Future Applications of DSENDS 3oL

 Many uses In current and near-future
NASA missions
— EDL planning, navigation, GN&C
— Uncertainty Quantification
— Sensitivity Analysis
— Monte Carlo Analysis

e In use by NASA, university,
government, and commercial users



Conclusions JPL
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e DSENDS

— Powerful and flexible design helps make
DSENDS versatile simulation framework

— Applied successfully to mission planning
and operation

— Applicable to wide range of space and
ground missions



	DSENDS:�Multi-mission Flight Dynamics Simulator for NASA Missions
	Background
	DARTS Lab Multi-Domain Simulations
	DARTS Lab Simulation Architecture
	Slide Number 5
	Framework: Frames
	DARTS Multibody Dynamics Solver
	Framework: Dshell Models and Signals
	Framework: Assemblies
	Framework:  DVar for data access
	Framework: SimScape Terrain Models
	Framework: Geometry
	Framework: Infrastructure
	Slide Number 14
	COMPASS
	Mars Science Laboratory (MSL)
	Mars Science Laboratory
	Mars Science Laboratory
	Phoenix and Insight Missins
	Phoenix EDL Timeline
	Insight Navigation Targeting
	Insight Landing Hazard Assesment
	LDSD / SIAD Testing
	LDSD / SIAD Flight Profile
	LDSD Flight Operations with DSENDS
	Asteroid Redirect Robotic Mission
	Asteroid Redirect Robotic Mission
	Asteroid Redirect Robotic Mission
	Future Applications of DSENDS
	Conclusions

