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Overview

• Introduction & Background
• Measurement models
• Analysis Results
• Conclusions
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Simplified optical communication schematic
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• Future interplanetary spacecraft 
intend to use optical 
communication to take advantage 
of higher data rates

• Laser signals can also be used 
for navigation

• This study compares navigation 
accuracies possible with optical 
and radio measurements
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The Case for Optical Communication Systems

• Higher bandwidth—up to 20x increase in 
data rate

• No allocation limitations
• Smaller on-board infrastructure
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Radio spectrum allocations as of January 2016. Image courtesy 
of National Telecommunications & Information Administration, 
U.S. Department of Commerce

Radio Spectrum

Electromagnetic spectrum
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Analysis Background
• Radio and optical data 

types simulated
• Different mission 

scenarios considered
– Mars lander case 

based on Mars 2020
– Mars orbiter case 

based on Mars 
Atmosphere and 
Volatile EvolutioN
(MAVEN) 
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Mars 2020 schematic. Image courtesy of NASA.

MAVEN at Mars. Image courtesy of NASA.
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Comparing optometrics and radiometrics

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. 6

Radiometrics Optometrics

Data Types Two-way Doppler, two-
way SRA range, ΔDOR

Optical range, ground-based 
astrometric measurements of 

angular position

Data 
uncertainties

Doppler: 0.10 mm/sec 
(0.00562 Hz)

SRA: 21.0 RU (2.99 m)
ΔDOR: 0.06 ns (2.25 

nrad)

Range: Depends on 
integration time

Astrometry: Depends on 
elevation angle, sky 

brightness, angle between 
Sun, spacecraft, and Earth

Error 
sources

Earth orientation, station location, ephemeris, GMs, 
clock

Troposphere + 
Ionosphere Troposphere only

Star catalog
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Optical Astrometry Constraints
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• Elevation: within 
30° of zenith

• Brightness: 
astronomical 
twilight (18°) 
observed

• Sun-Earth-S/C: 
Solar keep-out 
zone of 45°

Twilight
18°

30° off-zenith

45° Sun keep-outCan 
observe

Cannot 
observe
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Optical astrometry measurement weights
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• Varies with sky 
brightness

• Improves with 
higher elevation 
angle
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Analysis Metrics

• Mars Lander
– Position and velocity 

covariance mapped to B-
Plane

• Mars Orbiter
– Position and velocity 

covariance norm of 
reconstructed trajectory

– Orbital elements for 
predicted trajectory
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B-Plane schematics
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Astrometric
measurements 
only EFPA 

Uncertainty 
Corridor

Mars Lander Results

• Columbia Hills 
landing site 
example

• Using only 
astrometric
measurements, 
simulation 
does not meet 
EFPA 
requirement
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Optical Range + 
Astrometry

Radio Range + 
Doppler + 

ΔDOR

Radio Range + 
ΔDOR

• Optical 
outperforms 
traditional 
radiometric 
tracking data

• Optical 
outperforms 
direct 
radiometric 
analog (Radio 
range + ΔDOR)

• Meets EFPA 
requirement

Mars Lander Results
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5mm Optical 
Range Weight

1m Telescope 
Diameter

10m Telescope 
Diameter

Mars Lander Results

• Optical data 
most sensitive 
to telescope 
diameter

• Not sensitive to 
frame effects

• Meets EFPA 
requirement
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Radio

Optical

Radiometric 
Tracking Data 

Passes

Optical 
Tracking Data 

Passes

Mars Orbiter Results: 
April 18 – 19, 2016

• Based on MAVEN, 
currently in orbit at 
Mars

• Reconstruct orbit to 
within 3.0 km

• Optical outperforms 
radio during tracking 
passes & tracking 
gaps
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Radio

Optical

Radiometric 
Tracking Data 

Passes

Optical 
Tracking Data 

Passes

Mars Orbiter Results: 
May 5 – 6, 2015

• Degraded OD 
performance due to 
occultations

• Optical outperforms 
radio during tracking 
passes but not 
tracking gaps

• Still meet 
requirement



j p l . n a s a . g o v

Mars Orbiter Results: Summary

• Improvement of optical over radiometric 
tracking data types

• RMS across whole arc
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Parameter Position 
Norm

Velocity 
Norm

Radial 
Norm

Tangential 
Norm

Normal 
Norm

April 18 –
19, 2016 20% 15% 4% 21% 29%

May 4 – 6, 
2015 15% 31% -8% -4% 94%
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Orbiter Operational Constraints

• Pass duration
• Pass frequency
• Antenna pointing
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MAVEN tracking schedule; 
Simulated optical passes in blue.
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Conclusions

• Optical tracking data types viable alternative 
to radiometric data types; meets 
requirements for both mission scenarios
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• Pass frequency and 
duration important

• Additional operational 
constraints for optical 
tracking data types
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Radio Measurement Model Assumptions

Based on 
Mars 2020 
Lander
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Mars Orbiter Results: April 18 – 22, 2016
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Historical applications

• Orbit determination for Earth-orbiting 
spacecraft 

• Astrometry of orbital debris 
• Deep space laser ranging experiments
• Spacecraft dockings?
• None of these systems sufficient to 

replace radio-frequency tracking systems
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