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The Payoff

e Dragons are interesting creatures in their own right...
e ... but they also like to hide treasure

B-modes!

Dark Matter
Annihilation!

High-z Galaxies!
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Big Picture

Find observations that constrain:
e Abundances

e Extinction (total and polarized)

e Emission (total and polarized)
then build a model that satisfies all constraints simultaneously
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Starting Points

Dust spectral features suggest two primary dust types

e Silicates (e.g. 9.7 um extinction feature)

e Carbonaceous Grains (e:.g. PAH emission, 3.4 ym
extinction feature, 2175 A feature)
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Composition Effects

Grains are of different composition appear to have different
polarization properties

e Silicate Features— Polarization detected

e Carbonaceous Features— Unpolarized
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Draine and Li 2007 Model

e Specified the material properties of astronomical silicates
and carbonaceous material (graphite and PAHSs)

e Model inputs: radiation field, PAH fraction, dust mass

e Successful modeling of Galactic dust emission and
extinction, as well as dust emission from other galaxies
(e.g. the SINGS galaxies)

e Spherical grains— no polarization
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Draine and Fraisse 2009 Models
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We Need...

e New Models of Interstellar Dust
(with Polarization!)

e Hensley & Draine 2016. In prep.
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Polarized Dust Emission

¢ Models with silicate and carbonaceous grains alone have
difficulty reproducing the observed decline in the
polarization fraction with increasing wavelength

¢ A new ingredient— magnetic nanoparticles
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Magnetic Materials

e Ferromagnetic materials,
such as metallic Fe, have
all unpaired spins aligned
along a preferred axis

e Preferred direction of
magnetization implies a
minimum energy state with
all unpaired spins aligned
along preferred direction

o Ferrimagnetic grains such
as Fe;O4 and y-Fe,O3 are
also viable

Ferromagnetic spin lattice
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Magnetic Dipole Emission

e Thermal fluctuations can move the spins away from this
state

e Then magnetization vector precesses about the preferred
direction and produces radiation

Response to a fluctuation
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Emissivities

o Emissivity per unit
volume of 0.01um
grains heated to 18K 10-10

e Emissivity in mm
and sub-mm much
stronger than
amorphous silicate
grains
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Polarization

¢ Polarization depends on whether grains are free-fliers or
inclusions in larger grains
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Inclusions
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Inclusions

Of course, interstellar grains are nonspherical...
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Polarization
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Explaining the SMC SED
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e Model with 20 K Fe grains



A New Model
[ ]

A New Model

To construct a new model, we have:

e Updated the material properties of the silicate (Draine &
Hensley 2016, in prep) and carbonaceous grains (Draine
2016) based on new astronomical observations and
laboratory data

e Added magnetic nanoparticles as an optional model
component

e Using new grain materials, found a best fit size distribution
and alignment function
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Example

e 2:1 spheroidal silicate grains with 5% iron nanoparticles by
volume as inclusions

e Unaligned carbonaceous grains
e PAHs
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Emission
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Extinction
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Polarized Extinction

A New Model
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Polarized Emission
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Polarization Fraction
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Size Distribution
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Summary

e Inclusion of iron grains allows us to match the
frequency-dependence of the polarized emission

e We alleviate the tension between emission and extinction
in the Draine and Li 2007 model by making silicates more
emissive at long wavelengths
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With a Model, We Can...

e Test the model against the Planck sky and learn what
drives variations in dust properties

e Predict dust properties at all wavelengths given a model fit

e Simulate different realizations of dust properties and the
implications for component separation
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Testing the Model

e Model parameterized by radiation field strength and
amount of dust in each silicate and carbonaceous
components

¢ In progress: full-sky model fitting with Planck data

¢ In development: code interface to models to enable easy
SED fitting, simulation construction, etc.
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Predictions
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Conclusions

e Our new models of interstellar dust successfully reproduce
the mean properties of dust in the diffuse ISM, including in
polarization

¢ We make testable predictions of dust properties,
particularly in polarization

e The new models enable future work on the properties of
Galactic dust as well as next-generation component
separation
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