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« Tropospheric ozone (O;) is a greenhouse gas and air pollutant that affects I.

climate, tropospheric chemistry and air quality.

* |i is affected by large spatial and temporal variability: large heterogeneity and
variability of sources, chemical processes affecting formation and depletion and

variable lifetime in the troposphere (Cooper et al., 2014).

» Global and long-term monitoring systems and synergetic approaches are needed to

fully understand variability and trends (Cooper et al., 2015; Lin et al., 2015).

« At JPL-Table Mountain Facility (TMF) a long-term tropospheric O, database from

the DIAL system (McDermid et al., 2002) is available since 2000 up to date.



TMF located near Wrightwood, CA, in
Los Angeles National Forest.

Location: 34.4 ° N, 117.7° W

Elevation: 2285 m a.s.l.

Remote station with almost negligible
urban influence



Tropospheric O3 DIAL system
Tropospheric
ozone lidar
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= QOperating since 1999

= Vertical resolution:75-m until 2012, 7.5 m
since 2012

= Temporal resolution: 5-min - 2-h

= Profiles in this study: 2-h, 150 m to 3 km

= Measurement frequency: 3-5 times per

week at nighttime, occasionally daytime

)
UV photometric O3 analyzer I.

(Thermo Electronics)

= Operating since 2013
= 1-min resolution
= Lower detectable limit: 1.0 ppb

= Continuously operating

»Part of the TOLNET and NDACC

activities
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Surface O; behavior typical of
high elevation remote-sites:

« small amplitude in the
seasonal and diurnal cycles

« high O3 values compared to
low-elevation stations
affected by urban boundary
layer

mixing ratio (ppbv)

g

o

Interplay of the altitude and
distance to pollution sources
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Composite monthly mean surface ozone obtained from hourly

samples and 8hMDA values and composite mean ozone daily
cycle at TMF and nearby ARB stations for the period 2013-2015
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2A(\)verage profile (2000-2015) Average seasonal profiles I

Continuity from surface
up to ~9 km

Maximum values
in Spring/Summer

Average ~55 ppbv

Large variability UTLS
region

Maximum values in
Winter/Spring
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RESULTS: DIAL MEASUREMENTS
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Deseasonalized ozone mixing ratio above TMF. Anomalies (in %) were computed with respect to
the climatological (2000-2015) monthly means

« Large ozone variability, highlighting difficulty in identifying trends and patterns

* No clear mode of interannual variability observed



RESULTS: DIAL MEASUREMENTS
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Climatological values
2003-2007
2000-2002/2007-2015

Deseasonalized ozone mixing ratio above TMF. Anomalies (in %) were computed with respect to
the climatological (2000-2015) monthly means

» Positive anomalies 2003-2007, especially in the troposphere




RESULTS: L.ONG-TERM TRENDS ANALYSIS
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Overall positive trend of +0.31 ppbv/year observed in upper troposphere(7-10 km)

Larger positive trends in spring (0.71 ppbv/year) and summer (0.58 ppbv/year)
and negative trend in winter (-0.43 ppbv/year)




12-day back trajectories with HYSPLIT using NCEP Reanalysis data 10
Cluster analysis at different altitudes reveals five “0zone source regions” :

1- Stratosphere (intercept of the trajectories altitude with the tropopause height)

NOAA HYSPLIT MODEL
Backward trajectory ending at 0600 UTC 04 Mar 11
CDC1 Meteorological Data

Strat, Spring

Source * at 34.40N 117.70 W

Tropopause height




12-day back trajectories with HYSPLIT using NCEP Reanalysis data 10 I.
Cluster analysis at different altitudes reveals five “0zone source regions” :

1- Stratosphere (intercept of the trajectories altitude with the tropopause height)

2- Central America

Cent Am, Summer




12-day back trajectories with HYSPLIT using NCEP Reanalysis data 10 I.
Cluster analysis at different altitudes reveals five “0zone source regions” :

1- Stratosphere (intercept of the trajectories altitude with the tropopause height)
2- Central America
3-Asian boundary layer (below 3 km)

4-Asian Free troposphere (above 3 km)

AFT, Spring




12-day back trajectories with HYSPLIT using NCEP Reanalysis data 10 I.
Cluster analysis at different altitudes reveals five “0zone source regions” :

1- Stratosphere (intercept of the trajectories altitude with the tropopause height)
2- Central America

3-Asian boundary layer (below 3 km)
4-Asian Free troposphere (above 3 km)
5- Pacific Ocean

Pac, Winter

Pacific




Frequency of the air masses arriving at each altitude from the source 11
regions in number of trajectories (and %):

905 (62%) 57 (4%)  5(0%) 266 (18%) | 139 (10%)
426 (29%) 76 (5%) 49 (3%) 523 (36%) | 243 (17%)

167 (11%) 85 (6%) 101 (7%) 613 (42%) | 296 (20%)
97 (7%) 107 (7%) 122 (8%) 540 (37%) | 317 (22%)
72 (5%) 179 (12%) 107 (7%) 472 (32%) | 266 (18%)

|

o Influence from the Pacific Ocean (background region) in 10-22%



RESULTS: TROPOSPHERIC 03 SOURCES

Frequency of the air masses arriving at each altitude from the source 11
regions in number of trajectories (and %):

l
Strat Cent Am

ABL | AFT Pac
Distribution of Strat. air masses per month

905 (62%)

426 (29%)

167 (11%)
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L 72 (5%) |

o0 Increasing influence of
the stratosphere with
altitude

Occurrence (%)

o0 Higher stratospheric
influence in Spring-
Winter



Frequency of the air masses arriving at each altitude from the source
regions in number of trajectories (and %):

Strat Cent Am

5(0%) 266 (18%)
49 (3%) 523 (36%)
101 (7%) 613 (42%)
122 (8%) 540 (37%)

(7%) 472 (32%) |

0 Predominant influence
from Asia below 11km



Frequency of the air masses arriving at each altitude from the source
regions in number of trajectories (and %):

—
| ABL | N
Distribution of Asian air masses per month

0 Predominant influence
from Asia below 11km

Occurrence (%)

o Higher Asian influence
in Spring below 10 km




Frequency of the air masses arriving at each altitude from the source 11
regions in number of trajectories (and %):

Strat ABL AFT Pac

57 (4%)

76 (5%)

85 (6%)
107 (7%)
179 (12%)

o Contribution of Central
America between 12 and
3% (decreasing with
altitude)



Frequency of the air masses arriving at each altitude from the source
regions in number of trajectories (and %):

Cent Am

Distribution of Cent. Am. air masses per

13 km

76 (59
85 (69
107 (7

179 (12

o Contribution of Central
America between 12 and
3% (decreasing with
altitude)

Occurrence (%)

o Air masses arriving from
Central Amer. mostly on
July-Aug.




RESULTS: TROPOSPHERIC 03 SOURCES

—— Strat ABL —— AFT —— Pac

Spring

100 150 250

O; mixing ratio

Composite O5 profiles of the median values obtained for different source
regions and season. Data with a low number of cases has been filtered out.

12

Larger O, values
associated to
stratospheric air
masses

Stratospheric
Influence down to
5 km 1

winter/spring

Lowest O, values
for Pacific or
“background
region”

O, enhanced values in summer observed for Central American air masses (related
to lightning-induced local production during the North American monsoon)

O, transport from Asia associated observed, especially in summer.
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Tropopause folds I.

Tropopause folds are an additional source of stratospheric ozone

Above TMF, 27% of the analyzed lidar data affected by the presence of
tropopause folds

MERRA temperature profiles with 1 km vertical resolution above TMF are used to
identify multiple tropopauses (Chen et al., 2011)

 Most occurrences in winter and spring

with multiple tropopauses




RESULTS: TROPOSPHERIC 03 SOURCES

Tropopause folds
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Single tropopause: Double tropopause:
- 12-13 km in winter/spring - Lower (or WMO) tropopause ~ 12-13 km
- 16-17 km in summer/fall - Upper tropopause ~17-18 km




'RESULTS: TROPOSPHERIC 03 SOURCES
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Upper tropopause
(double)

a) O, profile on
)/ . January 8, 2003
v { (tropopause fold)

Single tropopause A

b) Winter and

3
E Spring O3 in the
E presence of a
< double
tropopause (DT)
and single
tropopause (ST)
— — = ST cases winter ! C) Same as (b)
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— — — ST cases winter — — ~ ST cases spring . focused _ on
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O, dual vertical structure in the UTLS region:
* higher-than-averaged values in the bottom half of the fold (~12-14 km).
» lower-than-averaged values in the top half (~14-18 km).

Impact on lower troposphere, with higher ozone values



CONCLUSIONS
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AS Tropospheric ozone seasonal and long-term variability as seen by Dacific.
lidar and surface measurements at the JPL-Table Mountain Facility,
California nd
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entral American Iinfluence in summer, due to lighting-associatec enhanced

O, during the North American Monsoon.

» Tropopause folds (27% occurrence) associated to double structures in the UTLS
region and +2 ppbv enhancement in the lower troposphere

 More details in Granados-Muioz and Leblanc, ACP, 2016.
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Seasonal cycle dependence on altitude (2000-2015)
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Maximum values
in winter
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Very similar
seasonal cycle
between 4-10 km

Continuity with
the surface
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