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1.Background
a) Purpose of wavefront correction
b) Types of wavefront correction
c) Detection methods

2.Combining wavefront correction 
and signal detection



Purpose of WFSC

Goals of Wavefront Sensing & Control (WFSC):

1. Clean up PSF 
• i.e., recover diffraction-limited seeing

2. Reduce wings of stellar PSF back toward ideal level.
• Easier to see companions directly
• Reduces photon shot noise from star
• (A coronagraph can further suppress the stellar PSF wings)



Deformable Mirrors
• Use Deformable Mirrors 

(DMs) to correct aberrations

• DMs change the path length 
(phase) of light

• Array of posts behind a 
continuous facesheet

Image Credit: Bifano 2011

• Phase at DM well-approximated as 
linear superposition of actuator 
influence functions:

Influence Function
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Types of Wavefront Correction
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Adaptive Optics for the Ground

Adaptive Optics (AO): 
1. Measure phase errors with wavefront 

sensor (WFS)
2. Apply opposite phase on DM

Main issues for high-contrast imaging: 

• Aberrations after WFS not sensed and 
corrected

• AO corrects only phase errors

 Can reach only ≈10-5 contrast

Image Credit: CfAO Summer School

Correct phase aberrations from atmospheric turbulence and imperfect optical surfaces
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NCPA Correction
Correct non-common path aberrations (NCPAs) 

upstream of coronagraph

Main issues for high-contrast imaging: 

• Still doesn’t sense aberrations 
downstream of coronagraph

 Achievable contrast floor of ≈10-6 – 10-7

Examples: CAL in P1640, ZELDA in SPHERE, CAL in GPI 



Focal Plane Wavefront Correction
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Focal Plane Wavefront Correction

Optical System

• To correct all quasi-static speckles:
• Estimate and control starlight directly in final focal plane.
• Use science camera as WFS to estimate all aberrations.

• Estimation + Control (= Correction) is iterative:
• Model errors, estimation errors, nonlinearities



Focal Plane Wavefront Control

Optimal Controller: (Stroke Minimization/Electric Field Conjugation)
• Cost function to minimize: 

• Optimal command: 

Pueyo 2009, Give’on 2007

Linearized Model of E-field from DM
DM changes phase of incident E-field

DM phase changes are very small  linearize

Fourier optics  linear propagation to camera

Minimize energy 
in dark hole

Need an estimate of Ek-1 to use control… 



Focal Plane Wavefront Estimation

• Star and planet are mutually incoherent  add in intensity

• Estimation Problem: 
– Controller needs complex-valued E-field, but camera measures intensity only.

• Solution: 
1. Modulate starlight by actuating DMs.
2. Infer E-field from modulated intensity measurements

= + +i
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What’s in an Image?

Image Credit: 
Brian Kern & Eric Cady

(exoplanets, disks, stray light, 
background stars and galaxies)

(starlight only)(JPL HCIT lab image)



Estimation via Pair-Wise DM Probing
• Estimate light at each pixel separately
• Take images for +/- probe shapes on DM:

• Subtract +/- probed images to isolate cross term (heterodyne gain)

At least 2 probes (since 2 unknowns)

Least Squares Estimate:
Batch Process Estimator (BPE)

= zk
Measured

= Hk
Model-based

=xk
Unknown

Give’on+ 2007



Image Post-Processing Methods
RDI: Remove starlight by subtracting a template PSF

Target Star Template PSF (no companion) Circumstellar Disk Revealed

Image Credit: archive.stsci.edu/prepds/laplace/

ADI: Take advantage of planet moving w.r.t. stellar speckles during 
telescope/sky rotation.

Image Credit: astrobites.org



Coherence Differential Imaging (CDI)

• Alternative idea: Modulate starlight* without moving 
telescope

• Stellar speckles change while planet stays the same
• Called “coherence differential imaging” (CDI)
• Not yet demonstrated on-sky

* See Frazin 2013,2016; Young  2015; Riggs+ 2015



Recursive Coherence Differential Imaging (RCDI)
• My PhD work: Use wavefront correction to modulate the starlight

 FPWC already separates incoherent light from the starlight efficiently

1. Wavefront correction time not lost as overhead
2. Use nonlinear, near-optimal estimator (iterated extended Kalman filter, IEKF) to 

estimate both incoherent intensity and stellar E-field 
3. Combine IEKF with efficient pair-wise probing scheme
 We call it Recursive Coherence Differential Imaging (RCDI)

= + +i

2
measured 
intensity

incoherent 
intensity
(aka bias)

Starlight:
Real{E}

Starlight:
Imaginary{E}

Image Credit: 
Brian Kern & Eric Cady

(exoplanets, disks, stray light, 
background stars and galaxies)

(starlight only)(JPL HCIT lab image)



Comparison of DI Methods

Unique Limitations of Each Method
• RDI

• Wavefront stability during slews
• Long-term repeatability of dark hole speckles
• Similarity of stellar size & spectra
• Number of PSFs in image library
• Image registration

• ADI
• Wavefront stability during rolls
• Image registration

• RCDI
• Accuracy of the optical model
• 2x higher stellar shot noise variance from probing

Takeaway: RCDI can be better if stability of stellar wavefront is a concern or slew time is 
long compared to imaging time.



RCDI Lab Experiment at Princeton

19

• Planet-like signal injected into the testbed
• 4 trials at different contrasts

True Planet Contrast (x 10-7):

Scaled Template PSF:

KF’s Incoherent Estimate
(not recursive):

IEKF’s Incoherent Estimate
(recursive):

0.8 2.0 3.8 6.6

Planet is in right-
side dark hole

Planet is found using wavefront correction images!

Riggs+, JATIS 2016



RCDI Monte Carlo Simulations

• Monte Carlo simulations of wavefront correction: 
• Changing optics’ phase errors & DM actuator gain errors
• Photon shot noise only (no dark current or readout noise)

• 100 trials with/without planet at xi = 3.5 λ0/D
• Planet at 3x10-10 contrast (≈3x below starlight)
• SPLC design for WFIRST CGI 
• Static optical system (no low-order disturbances)
• Low flux: 1 photon/image/pixel (at planet peak, on average)

• Linear plot
• 11 pixels within 

FWHM

Key Point: To characterize RCDI detection performance statistically:
• Perform Monte Carlo trials of wavefront correction.
• Include a planet in half the cases.
• Compute the receiver operating characteristic (ROC) curves to 

compare probability of detection vs false alarm rate.

Full write-up in Riggs thesis, 2016: http://arks.princeton.edu/ark:/88435/dsp01fb494b824



Planet PSF Correlation
Normalized 2-D correlation between planet’s 
template PSF and incoherent estimate

 PSF correlation increases with exposure time if planet is present
 Rolling average is biased negative with no planet present21

Model-Based Template PSF
• 11 pixels within FWHM



ROC Curve Construction
Receiver Operator Characteristic (ROC) Curve: 

Plots probability of detection vs false alarm rate

Probability of detection =
o Fraction of all true 

planets counted

False alarm rate = 
o Fraction of spurious 

signals counted as 
planets

• One ROC curve per 
time step

• Built by setting 
minimum PSF 
correlation value 
(threshold)

ROC Curve



ROC and AUC Curves

Darker = Later iterations
(more total exp. time)

• Near-perfect detection after 
~6 correction steps

• IEKF and rolling average give equal 
detection performance. 

• Perform close to the fundamental noise 
limit

AUC=1  Perfect classification of signals
Tradeoffs:
• (Higher) Probability of detection
• (Lower) Probability of false alarm
• (Lower) Total exposure time



Summary

• AO corrects atmospheric turbulence
• NCPA correction for some static errors in a telescope
• FPWC required for high contrast (better than 1e-7) 
• Detection can be done during wavefront correction

• Focal plane wavefront estimation already separates incoherent light 
and the stellar E-field
 Exoplanets and disks are in the incoherent signal

• A recursive estimator (e.g., the IEKF) can build a near-optimal 
incoherent light estimate from all correction images.

• Simulations and a lab experiment prove the viability of this recursive 
CDI (RCDI)



Backup Slides



Two phases of correction:
Stage A: “Bright star” correction
Stage B: “Science star” correction

Future Work

Add wavefront instability 
during telescope maneuvers:

A B

 Because of wavefront changes, 
PSF subtraction isn’t as accurate

 RCDI still works

Contrast 
degrades

Correction & RCDI

Where is the crossover when RCDI becomes more efficient?

Observation Scenarios:



• BPE ignores previous estimates
• KF optimally combines previous data with new measurements
• Enables faster correction and robustness to measurement noise

Kalman Filter (KF)

Model-based updates of 
state x & state covariance P

Kalman gain: Balances model 
and measurement error 

Measurement-based 
updates of x & P

Kalman Filter Equations (per pixel)

Groff & Kasdin 2013

Incoherent estimate is not recursive:

Starlight
estimate

Unprobed
image

27

Exoplanets are in the incoherent signal



Goal: estimate both stellar E-field and incoherent intensity recursively
• Because planets are in incoherent signal
• Requires nonlinear filter

Extended Kalman Filter (EKF)

State:

BPE & KF EKF

Measurement:

• Add incoherent 
signal to state

• Stop differencing 
images

• Add unprobed
image to state

Riggs et al. 2016

28

Differences out 
incoherent signal



EKF Equations

Quadratic
Measurement 

Function:

Measurement 
Vector:

Linearized 
Observation 

Matrix:

Extended Kalman Filter Equations

• Nearly same form as KF’s

• Different matrix definitions 
because of different x & z 

29

Riggs et al. 2016



• Problem: EKF estimates known to be biased
• Solution: Iterating the EKF can reduce the bias error

1. Run EKF
2. Relinearize about new estimate
3. Re-compute H & K. 
4. Re-compute x & P.
5. Repeat steps 2-4 until estimates converge.

Iterated Extended Kalman Filter (IEKF)

Iterated Extended Kalman Filter (IEKF) Equations

30



Estimator Comparison Experiments

Review:
Pair-wise Probing: DM modulates image plane with pairs of probes 
1. Batch process estimator (BPE): linear model, no previous data used 

2. Kalman filter (KF): linear model, recursive star estimation

3. Extended Kalman Filter (EKF): nonlinear model, recursive star and planet estimation

4. Iterated Extended Kalman Filter (IEKF): nonlinear model, recursive star and planet estimation, 
less bias error

Borde & Traub 2006; Give’on+ 2007, 2011;
Groff & Kasdin 2013; Groff et al. 2016; Riggs+ 2016
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