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Background

e UNSW and JPL responded (in 2015) to a NASA Research
Announcement on the potential commercial profitability of
“mining” water on Mars in support of a growing Mars Colony
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End-to-End Model Data Flow
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Mars Colony Architecture Model (MCAM)

e Data model based on DoDAF 2.02 with “for-purpose” extensions
* MCAM Key Constructs

— Operational Nodes (Surface Locations, Orbits, Lagrange Points)

— Systems (Transport, Mining, Habitation, etc.) .
_ - - s Uy
— Operational Activities/Functions :

Mars Colony Architectyre Model (MCAM)
Dictionary
Vervien 13

Data

— Resources (People, Material, Information, etc.)
— Milestones

— Needlines

— Operational Resource Flows

— System Resource Flows

— Measures (Mass, Capacity, Reliability, etc.)

— Performer Classes
— Rules (Standards)

e “For-purpose” extensions permit quantitative analyses

 Key quantitative relationships are needed for ISRU (i.e., extraction output
(kg) of mining operations based on technology, number of mining systems
deployed, number of persons by personnel type, etc.)
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Mars Colony Architecture Model (MCAM)
Entity-Relationship Diagram (System Resource Focus)
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Mars Colony Architecture Model (MCAM)
Entity-Relationship Diagram (Operations Focus)
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Mars Colony Architecture Model (MCAM)
Entity-Relationship Diagram (Human Activities Focus)
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Extraction Process Model
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HabNet

Mid-fidelity time-based ECLS system simulator based on
BioSim

Computes the external demand for ISRU water based on ECLS
system closure, number, type, activities, and gender of Mars
Colony inhabitants
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MISWEs Transporters  Plants Total Elements
Quantity 1 1 1 3
Unit Equipment Price (SM) 200.00 $ 90.00 $ 655.00
Mass (kg) 1,000.00 $ 600.00 $  1,200.00
Design Life (yrs) 10 10 10
Delivered Water (kg/week)

-1000 o 1000
Net Present Value (in $ millions)

Global Parameters Avg Yearly Water Price Index

DiscountRate 20.0% 1 103.36
NumModelYears 20 108.94
YearModelStart 1/1/2055 113.48
Drift (%/week) 0.05% 112.26
Volatility (weekly) 0.50% 112.39
Initial Water Price (5/kg) 4,137.00 114.44
TaxRate 30.00% 112.58
114.22
118.41
120.84
120.81
123.31
128.76
134.47
133.96
131.63
136.74
141.26
141.09
131.62
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Profitability S-Curve Changes In Response To
Parameter Shifts (Vf(x))

o = weekly water price volatility at Mars Colony
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Even with the current simple set-up, a user can control >50 scenario parameters and
technical attributes through MCAM.




Major Findings To Date i N2V

A Mars Colony architecture is largely driven by:
— Orbital mechanics

— Human physiology

— System technologies

— Mars environments

— Economic and social constraints

Commercial viability of mining water on Mars is far from
guaranteed, but could be met by several combinations of
technical and economic attributes.

Local logistics (water location and availability) on Mars affects
the Colony’s optimal surface architecture (includes location),
which in turn, affects the required interplanetary supply chain
infrastructure.

|ldentifying what design choices and technology investments
have the highest payoff will require further refinements in
each of these models.
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Mars In Situ Water Extractor (MISWE) System

Water Collection ~
Canister

e Mars In Situ Water Extractor weyes, 2

e Seqguence of Operation:
— Auger drill selectively retains ice rich
soil
— Sealing trough sleeve and preloading
against soil surface

— Heat is conducted trough the auger
into the icy soil

— Contained ice melts, vaporizes and oid Trep Tomg
bleeds trough a valve into the Pzl
condenser
— Dirill is exposed and rotated to free it
from dry soil |
il . LowerTeme - IVlars soil simulant
et e
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