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NISAR Mission Overview

NISAR Uniquely Captures the Earth in Motion

NISAR Characteristic: Would Enable:

L-band (24 cm wavelength) Low temporal decorrelation 
and foliage penetration

S-band (12 cm wavelength) Sensitivity to light vegetation

SweepSAR technique with
Imaging Swath > 240 km

Global data collection

Polarimetry
(Single/Dual/Quad)

Surface characterization and 
biomass estimation

12-day exact repeat Rapid Sampling

3 – 10 meters mode-
dependent SAR resolution

Small-scale observations

3 years science operations 
(5 years consumables)

Time-series analysis

Pointing control < 273
arcseconds

Deformation interferometry

Orbit control < 500 meters Deformation interferometry

> 30% observation duty 
cycle 

Complete land/ice coverage

Left/Right pointing 
capability 

Polar coverage, north and 
south

NISAR Will Uniquely Capture the Earth in 
Motion
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NISAR Instrument Overview

Radar Antenna 
Reflector

Radar 
Antenna 

Boom

Radar Antenna
Structure

Boom Attach
Point

S-SAR Feed RF
Aperture          

L-SAR Digital 
Signal Proc 
Electronics

S-SAR 
Electronics

(Inside)

L-SAR Radar
Instrument 
Controller

and RF Back-End
(inside)

L-SAR Transmit
Receive Modules 

Instrument Subsystems:
• L-Band SAR (JPL)
• S-Band SAR (ISRO)
• Instrument Structure (JPL)
• Radar Antenna (JPL)

L-SAR Feed RF
Aperture          

Instrument Structure also houses GPS unit and Solid State Recorder
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NISAR Science Observing/Operations Modes
Blanket Land and Ice Coverage Every 12 Days

• Observation strategy employs a small subset of possible modes

Observation Strategy L-band S-band Culling Approach
Science Target Mode+ Resolution Mode Resol. Sampling Desc Asc

Background Land DP HH/HV 12 m x 8 m cull by lat

Land Ice SP HH 3 m x 8 m cull by lat

Sea Ice Dynamics SP VV 48 m x 8 m s = 1 p

Urban Areas 6 m x 8 m s = 1 p

US Agriculture QP HH/HV
VV/VH

s = 1 p

Himalayas CP RH/RV s = 1 p
India Agriculture s = 1 p

India Coastal Ocean DP HH/HV or
VV/VH

s = 1 p

Sea Ice Types DP VV/VH s = 3 p

3
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NISAR Swath Coverage

~236 km Earth-fixed ground 
track spacing at equator for 
12-day repeat orbit

• All science disciplines require frequent 
coverage over global targets

• NISAR approach would acquire 
sufficient swath to cover equatorial 
ground track extent
Global access at desired time sampling 

and imaging characteristics

• SweepSAR technology being 
implemented independently by both 
JPL and ISRO
• Transmit pulse with full feed illumination
• Track echo digitally with individual 

receivers (12 at L-band; 24 at S-band)
• Assemble individual receivers into a full-

swath measurement
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L-SAR Electronics 
(Only Horizontal Polarization Shown)

Transmit 
Receive 
Modules

First Stage 
Processors

Second Stage 
Processor

Digital Power System 
Timing, 
Telemetry, 
Solid State 
Recorder 
Interface
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High Power Density Phased Arrays

1.5 m x 0.3 m

Standard Phased Array

12m x 2.5m

• The SweepSAR reflector architecture is expected to be more cost effective than a traditional phased 
array, but the RF and DC power densities become much higher

• Development focused on improving reliability for high power densities
• Increase RF power density
• Improve component stability
• Enable new instrument architecture

Phased Array Feed

• Lower RF Power Density (67 W/m2)
• Larger Radiator Area (30 m2 )
• Higher Thermal Inertia

• Higher RF Power Density (4000 W/m2)
• Smaller Radiator Area (0.5 m2)
• Lower Thermal Inertia

For 2kW RF 
Peak Radiated 

Power

12 m diam



7© 2016 California Institute of Technology. Government sponsorship acknowledged. 

GaN High Power Amplifier for L-SAR
Increased RF output, decreased DC power and heat

• Exhaustive studies of GaN-based high-power amplifiers showed that 
NISAR could decrease its DC power by almost half of a kilowatt by moving 
from then-state-of-art Bipolar devices to GaN

• DC power savings are matched by a decrease in waste heat

• JPL tested devices from multiple vendors for TID (total dose) and SEE 
(Single Event Effects)
• All devices tested showed no ill-effects from radiation, up to our required levels

• L-SAR now has 24 GaN High Power Amplifiers

• Tested with FLIR thermal camera (left) and 
thermal chamber

• Devices shown to not exceed NASA standards for 
device temperature

• Transmitters shown to be thermally stable
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L-SAR Digital Hardware

qFSP (quad First 
Stage Processor): 
Controls TRM, 
digitizes RF, digital 
calibration, 
preliminary 
beamforming

CTB (Control and Timing 
Board): System 
timing/Command 
distribution

SSP (2nd Stage 
Processor): DBF, data 
packing, formatting, 
headers

SIF (Solid State 
Recorder Interface): 
Formats data for 
recorder, adds 
telemetry headers

HKT (House-Keeping 
& Telemetry): 
Monitors instrument 
temperature and 
voltages for health 
and for calibration.
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L-SAR Digital System Data Flow
Both H and V Polarizations Shown
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L-SAR ADC Measured Performance

• L-SAR uses sub-harmonic sampling to directly digitize 1.2 GHz RF signal with a 
240 MHz sampling clock. This drastically simplifies the 24 channel system, but the 
importance of ADC performance is increased significantly. 

• In order to meet instrument requirements for SNDR (Signal to Noise+Distortion
Ratio)  and ENOB (Effective Number of Bits), the science signal needs better than 
40dB SNDR and approximately 8-bit ENOB, < 400 femto-second jitter.

Chuang et. Al (2016) “NISAR L-band Digital Electronics Subsystem: A Multichannel System with Distributed Processors for 
Digital Beam Forming and Mode Dependent Filtering”, IEEE Radar Conference 2016.
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PRF & Timing Diagram

• Frequency Synthesizer has a 10 MHz STALO (STAble Local Oscillator) as a master 
clock.

• Using the 10 MHz, it generates a 960 MHz Chirp Generator Clock and a 240 MHz 
ADC clock.

• The CTB (Control and Timing Board) used the 10 MHz to create the radar PRF, 
which is also used to discipline the Chirp Generator trigger.

• The qFSPs all receive the PRF and 240 MHz clock, using the latter for ADC and 
processing clock. 
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Real-time digital calibration

• The SweepSAR technique enables large swath imaging, but introduces 
new challenges

• 24 independent transmitters and receivers must be made to work as one, 
with little help from the ground
• Data rates preclude sending all 24 channels to the ground for processing, so significant 

processing must take place on-board

• Once channels are combined, errors in individual channels cannot fully be corrected, so 
this must take place on-board

• Data volumes dictate that much of this processing must take place in real-time

• By leveraging the 24 independently digitized channels, we are able to 
calibrate both transmit and receive on-board, prior to beamforming
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SweepSAR calibration concept

Traditional Loopback Calibration 

• Relaxes the isolation requirement between TX and RX

• Calibration can be done during actual receive events

• Differentiates between TX and RX changes (important for SweepSAR)

• Compensates for all changes not just temperature

SweepSAR Digital Calibration 

Loopback
Transmit
Receive (caltone)

Hoffman et al. (2015) “Digital Calibration System for the Proposed NISAR (NASA/ISRO) Mission” 
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Calibration Testbed (breadboarding)

Multi-channel excitation:
Single channel of CW or 
chirp, through a computer 
controlled 4-way splitter 
with independent control 
of phase and amplitude.

Digital Calibration Testbed iFSP (First Stage Processor breadboard in 
an iBoard4); iSSP (Second Stage 
Processor breadboard in iBoard4); and a 
National Instruments cPCI chassis acting 
as RIC (Radar Instrument Controller)
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SweepSAR/Digi-Cal “First Light”

Prototype 
SSP (Second 
Stage 
Processor)

Qualification 
Model TRM 
(Transmit 
Receive 
Module)

Antenna Port

Prototype 
qFSP (quad-First 
Stage Processor)

1 of 4 ADCs

Breadboard 
Digital 
Waveform 
Generator & 
Upconverter
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Transmit Calibration Result Example
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Summary

• NISAR will employ a novel architecture

• Individually digitized channels present both enabling advantage and unique 
challenges

• High-speed, on-board processing makes SweepSAR possible

• NISAR is currently in “formulation” phase (B)
• Key L-SAR electronics fabricated to EM level
• Major procurements executed

• NISAR conducted its Preliminary Design Review June 21-23, 2016

• NASA Key Decision Point to transition into “implementation” phase (C) 
scheduled for August 23, 2016
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