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Cassini-Huygens Mission Overview
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Solstice Mission Trajectory
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Key Orbital Characteristics of Final Orbits

• 42 short-period orbits
– Nov.  2016 to Sept. 2017

• 20 F-ring orbits
– Periapses just outside 

Saturn’s F ring
– Sets up Cassini for final jump 

to orbits inside D ring
– Scientifically rich

• High resolution F and A 
ring observations

• Ring occultations (Earth 
and Solar)

• Auroral field line crossings 
at r = 3.4 - 4 RS
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Grand Finale (Proximal) Orbits

• 22 Grand Finale orbits
– Periapses in 2,200 km “clear”

region
– First orbit April 2017 (next year 

during EGU!)
– Critical inclination:  63.4°

• If delta v is available, go lower 
if Saturn upper atmosphere 
continues to shrink 

• Current impact date: 15 
September 2017

• Juno-like mission with Cassini 
instruments
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Cassini’s 
Grand Finale
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Final 42½ Orbits
F-ring orbits
Grand Finale orbits
Impact orbit
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End-of-Mission Movie

Apr. 22, 2017                                    July 1, 2017                                  Sept. 15, 
2017
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F Ring and Grand 
Finale
Earth 

Occultations
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View from Earth



• Saturn internal structure
– Gravitational & Magnetic Fields 

measurements
– Determine Saturn’s gravity field to 

order J10

– Determine Saturn’s higher order 
magnetic field components

– Measure Saturn’s internal rotation rate

Unique End-of-Mission Science
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Saturn Internal Structure:  Gravity 
Harmonics

• Saturn gravity harmonics (zonal) up to degree 10 can be estimated 
with an accuracy < 10-8 (with multiarc solution using 6 proximal 
orbits for gravity passes) 12
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• Condition number is a measure of the accuracy with which a magnetic field model
can be determined based on spacecraft trajectory.  

• Significant improvement possible with periapse inside D ring.  
• May be possible to determine depth of Saturn’s conducting, metallic core. 

Saturn Internal Structure:  
Magnetic field
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Saturn Internal Magnetic field:
Tilted Dipole?
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Probe Saturn’s Interior

He/H2 in the atmosphere is 
a clue to cooling history 
and phase separation in
the interior
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Helium rain
falling toward
the core



Ring Mass:  Constrain age of rings

• Without proximal orbits, a-priori ring mass uncertainty is 
100% of nominal values

• 6 orbital arcs for ring mass (and Saturn gravity) provide 
estimation accuracy for total ring δGM ~ 0.34 km3/s2 (~5%)
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C-Ring B-Ring 
GM= 1.9 km3/s2 

(Voyager)

A-Ring Cassini
Division 

74,500 km 92,000 km 117,580 km 122,200 km 136,780 km



Ionosphere, innermost radiation 
belts & inner D ring particles
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• Measure in situ plasma of 
Saturn’s ionosphere, 
innermost radiation belts 
and D ring for the first time

• In situ observations of 
Saturn’s auroral
magnetosphere at solstice



• Highest resolution main ring 
observations 
– First Active Radar of the Rings

• Highest resolution Saturn 
atmospheric studies including 
polar observations and aurora

Unique End-of-Mission Science
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Grand Finale Environment

Sun, Mar 6, 2016 IEEE Aerospace Conference 2016 - Session 2.01 -
Deep Space, Earth and Discovery Missions 19



Grand Finale Environment

Sun, Mar 6, 2016 IEEE Aerospace Conference 2016 - Session 2.01 -
Deep Space, Earth and Discovery Missions 20
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Grand Finale Environment

Sun, Mar 6, 2016 IEEE Aerospace Conference 2016 - Session 2.01 -
Deep Space, Earth and Discovery Missions 21

Ring-plane
Crossings

Periapses



Grand Finale Corridor
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RPC Altitudes

   Revs with HDR

D-Ring Detection Boundary

Max-Atm-Torque Altitude

   Revs on RCS Control

Tumble Boundary for RWAs

Tumble (RCS)

Capture
1-bar

D-Ring



Between Rings & Planet  22 Times
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Between Rings & Planet  22 Times

24



F ring/Grand Finale orbits compared 
to Juno orbits

• Cassini’s F ring/Grand Finale orbits and Juno orbits are 
comparable and scientific goals are very similar

• Juno spacecraft will orbit Jupiter, July 2016 to Feb. 2018
– 37 science orbits over 20 months

• Cassini’s F ring/Grand Finale orbits, Nov. 2016 to Sept. 
2017
– 42 science orbits, 22 with Juno-like periapses

• Both have low periapses close to their planets and 
eccentric orbits (0.9-0.95)

• Main difference is inclination
– Cassini: 63.4° vs. Juno:  90°

• Cassini F ring orbits cross auroral field lines 
at r =3.4 - 4 RS, vs. 1.9 ± 0.7 RJ for Juno
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F ring/Grand Finale Science 
compared to Juno Science

• Common science goals:
– Interior structure of the giant planets: Gravity and magnetic field 

mapping
– Dynamics of the polar ionosphere and auroral magnetosphere
– Very high resolution measurements of giant planet atmospheres
– In situ measurements of the giant planet ionospheres

• Differences in science goals:
– Juno: Deep interior composition/water abundance 
– Cassini: Rotation rate of the planet (well known for Jupiter)
– Cassini: Saturn’s ring mass and detailed ring structure
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Cassini’s Final Plunge



Impact Orbit Geometry

Orbits 1-5
Orbits 6-7
Orbits 8-12
Orbits 13-17
Orbits 18-22
EOM orbit
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Cassini’s Final Plunge

• All scientific measurements in Cassini’s last few minutes require 
continuous downlink as Cassini plunges into Saturn’s atmosphere

• Saturn atmospheric in-situ measurements of atmospheric composition 
and density structure
– In-situ sampling atmospheric neutral composition (e.g. H2, He, HD) 
– Provides important in-situ constraints on upper atmospheric 

structure for future missions using aerocapture

• In-situ measurements of the properties of the magnetosphere 
connected to the rings along field lines 
– Measurements of material flowing on field lines might provide 

information on  ring composition

• MAPS in-situ observations, secondary axis determined by MAPS
29



• Saturn internal structure
– Gravitational & Magnetic Fields

• Ring mass
– Address age of main rings

• Saturn’s ionosphere, innermost 
radiation belts & inner D ring 
particles

• Highest resolution main ring 
observations 
– First Active Radar of the Rings 

• Highest resolution Saturn polar 
observations and aurora

Cassini Saturn science complements that from Juno mission to Jupiter 

Science Summary
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Questions?



Backup
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Remote Atmosphere Detection
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Final stages of Juno and Cassini missions
• After a long successful mission at Saturn 

Cassini End-of-Mission is planned for 
September 2017 when fuel is very low

• Juno End-of-Mission at Jupiter is predicted as 
October 2017 with expected radiation damage

• In both cases the spacecraft are deliberately 
plunged into atmosphere for planetary 
protection
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Between Rings & Planet  22 Times
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Saturn Observations

• Important periapse observations and initial estimate of number of 
orbits to accomplish them:
– Gravity field determination:  RSS: 6 orbits

• Earth-pointed through periapse
– Magnetic field determination (see MAPS list)
– In-situ sampling of ionosphere/exosphere/thermosphere -

CAPS/MIMI: 5, CDA: 4, INMS: 3
• Specified pointing direction (e.g. dust RAM) through C/A
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Saturn Science and Observations
• Saturn science outside closest approach

– Saturn atmospheric studies for composition and dynamics
• High resolution scans and mosaics of Saturn's polar regions, e.g. the North 

Polar Hexagon and aurora - ISS/VIMS
– ~180-degree turn to switch between poles

• Spectra up-close - CIRS/UVIS/VIMS
– Concern about heating CIRS and VIMS radiators beyond health and safety 

limits outbound from periapse (need project study of orientations that can be 
used to minimize heating)

• RADAR scans (noodles) 
– 90-degree turn from ORS to Radar pointing
– Potentially large turn from MAPS pointing to Radar pointing

– Occultations (radio, solar, and stellar) – RSS/UVIS/VIMS
• Inertial pointing, sensitive to timing shifts

• Apoapse observations (similar to current apoaspse Saturn 
science)
– CIRS Mid-IR Maps, UVIS EUV-FUV scans, VIMS/ISS dynamics 

imaging mosaics, and auroral  (ORS & MAPS) observations, 
occasional distant occ

• For detailed instrument-by-instrument breakdown see 2008 
SWG report
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Ring Science and Observations

• Ring science goals include a combination of seasonal factors and 
time baseline that are only satisfied by the proximal phase orbits

• Study ring vertical, radial, and azimuthal structure 
– RSS occultations covering ring opening range 24-27 degrees, as yet 

unobserved by Cassini or Voyager 
– Stellar occultations (UVIS, VIMS)
– Occultations are sensitive to timing shifts of more than a few minutes
– In this geometry the rings are the widest open and the optically thickest 

regions (dense core of the B ring) can be optimally studied. Several different 
specific science goals are addressed by these observations RC1a4b (RSS) 
(RN1b4c - time variation, RN1c1e, RN2a2e). 

• Determine the Ring Mass
– Requires 6 RSS earth-pointed passes to determine ring mass to a few 

percent
– This fundamental measurement - critical to determining the age of the rings 

- is best, and perhaps only, done by detecting minute gravitational 
perturbations on the spacecraft trajectory in orbits passing between the ring 
and the planet, RN1a2a (RSS)

38



Ring Science and Observations

• Determine compositional variations at high resolution 
– Only proximal orbits provide the combination of distance and 

opening angle needed (especially for VIMS)
– Requires at least two full scans and at least two targeted 

"patches". In order for VIMS to get the appropriate dwell time 
for their observations, some might be done tracking a 
particular target or targets - that is, on RWAs. 

– Another possibility is SOI drift-scan type pointing,  RN1c2c 
(VIMS, ISS)

• Determine the composition of the close-in and/or 
newly discovered "ringmoons" as targets of 
opportunity; especially when they fill a VIMS pixel. 
– These opportunities may arise on F-ring orbits in particular, 

and will require tracking, RN1c3b
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Ring Science and Observations

• Study self-gravity wakes and other ring microstructure in 
depth
– Need at least three full multifilter radial scans; drift scans probably 

OK. RN2a1c, RN2a2d (ISS)

• Obtain very high resolution images of propellers; lit and unlit 
faces not specified in TM but are desirable. 
– Targeting will be needed and possibly partial azimuthal mosaicing. 

RN2b1b, RN2b1c
– Propose to add all the large propellers whose orbits are well known 

(or will be by then) to the NAV database so late pointing updates will 
be made automatically

• No high priority ring observations identified outside periapse 
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MAPS Science Objectives and 
Observations

• Measurement of Saturn’s internal magnetic field to high order
– Frequent Mag cals to calibrate magnetometer data

• In-situ measurements at peripse for all MAPS instruments
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Icy Satellite Science

• No targeted icy satellite flybys are present in F-ring and Proximal orbits

• Excellent non-targeted opportunities exist for:
– Ringmoons Pan, Daphnis, Atlas, Prometheus, Pandora, Epimetheus 

and Janus
– Mimas, Enceladus and Tethys

• Some of these flybys provide unique coverage and/or the highest resolution 
of the mission

• Mosaics and scans are needed to cover targets as have been done 
throughout the mission
– Some live updates may be necessary

• Potential icy satellite stellar occultations

42



Icy Satellite Flybys (preliminary)
Object Time (2017) C/A (km) Uniqueness Comments
Daphnis 16 Jan 13:22 17,600 Closest ever by > order of mag
Pandora 23 Jan 17:17 19,000 Closest by a factor of 3
Mimas 30 Jan 21:06 40,385 Close flyby of N. Pole Map N. Pole
Epimetheus 30 Jan  21:07 5900 One of closest, but not unique
Prometheus 30 Jan  21:28 50,250 One of closest, but not unique
Pan 7 Mar 18:09 25,350 Closest by factor of 2
Janus 22 Mar 01:50 43,950 Second best (see below)
Pan 22 Mar 02:23 55,200 Equal to best yet
Enceladus 29 Mar 05:46 93,046 Last VGR class flyby
Janus 12 Apr 13:45 9060 Best by an order of magnitude 
Atlas 12 Apr 13:45 13,170 Best by almost factor of 2
Enceladus 3 May 00:45 174,730
Tethys 15 May 00:24 193,000
Enceladus 17 June 195,000
Enceladus 13 July 173,000
Enceladus 27 Aug 146,000

43Pink is must have; red should have 



Titan Observations

• Titan observations present no additional mission drivers

• Two targeted Titan flybys T125 (at start of F-Ring orbits), and 
T126 (at start of Proximal Orbits)
– T125:  ORS at closest approach and T126: RADAR
– Both closest approach periods focus on surface observations (in 

particular Hotei and the northern lake regions, longest possible 
baseline for change detection). 

• Typical Titan flyby observation strategy with typical uncertainties
• ~12 high priority non-targeted Titan viewing periods ranging 

from 90,000 km to over 1 million km, but typically around 
500,000km; ideal ranges for ISS Titan observations  
– Very good high northern latitude opportunities near summer solstice 

which are essential for achieving the atmospheric objectives such as 
understanding Titan’s atmospheric circulation and surface-
atmosphere interactions as close to solstice as possible, and thus its 
methane cycle.  High northern latitudes are difficult to observe from 
Earth 

– Typical non-targeted Titan observations, long ORS observations with 
some mosaicing
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Titan Non-targeted details
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Science within Proximal orbit phase

• Beginning revs: High Gain Antenna to ram
– Magnetometer and fields and particles in situ measurements 

• Middle revs: ring occultations (traverse inside B ring) and gravity 
measurements

• End revs: Periapses near upper extent of Saturn atmosphere for in-
situ measurements 
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Proximal Orbit Science Summary

• F ring/Proximal orbits offer unique scientific 
opportunities 
– Determine Saturn’s gravity field to J10
– Determine Saturn’s higher order magnetic field 

components to degree 6
– Measure Saturn’s internal rotation rate
– Estimate mass of main rings to 5%
– Measure in situ plasma of Saturn’s ionosphere, 

innermost radiation belts and D ring for the first 
time

– In situ observations of Saturn’s auroral 
magnetosphere at solstice

– Highest resolution main ring studies
– High resolution Saturn atmospheric studies

• Cassini Saturn science complements science 
from Juno mission to Jupiter 
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Key Mission Drivers and Liens
• Stares, scans and mosaics:  When can reaction wheels, then thrusters, 

no longer track rings and Saturn?  RWA tracking needed to minimize 
ISS smear

• Live updates:  How often are they needed?
• Large Turns: 180-deg turns (from lit to unlit rings, Saturn N. pole to S. 

pole) and 90-deg (Radar/RSS to ORS or MAPS) turns needed:  Any 
constraints on these turns in the proximal orbits?

• Health and safety radiator concerns for CIRS and VIMS outbound from 
periapse: Search for acceptable secondary axes during periapse

• Add large propeller orbital parameters to NAV database:  Is this a 
workforce driver? How many propellers can NAV handle?

• Newly discovered ringmoons and other potential discoveries:  How 
quickly can we update sequence?

• Opmode and power issues:  Are there any restrictions in these areas? 
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• Ring mass
– Estimate mass of main rings to 5% 
– Address age of main rings

Unique End-of-Mission Science
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Grand Finale Orbit Location
• Saturn impact from short 

period orbits
• EOM geometry reachable 

from any point in XXM tour
– 2-10 months set up
– Delta v:  5 - 30 m/s

• Inner D-ring radius:
– ~ 65,000 km

• Upper Extent of Saturn 
atmosphere:
– ~ 62,000 km (at equator)

• Saturn focus addresses key 
science and new 
discoveries

• Gap: ~ 2,000 km

ABD/C FX

Periapse in 2,000 km gap (X) 
between inner D ring and Saturn 
upper atmosphere
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Saturn’s Atmosphere: 40ºS

H2 number density

UVIS H2 number density

Total Mass Density

H number density

He number density

Total Number Density
H2 number density

UVIS H2 number density

• Tumbling Density For Cassini @ Titan 
– ~ 30x10-10 kg m-3 (~ 10x10-10 kg m-3 the Cassini XXM)
– 70% Thruster Duty Cycle (less for the Cassini XXM)

• *Note that Cassini uses 60330 km (100 mbar) for 1 Rs.



• F ring/Grand Finale orbits offer unique scientific 
opportunities 

• Saturn internal structure
– Gravitational & Magnetic Fields measurements
– Determine Saturn’s gravity field to order J10
– Determine Saturn’s higher order magnetic field 

components 
– Measure Saturn’s internal rotation rate

• Ring mass
– Estimate mass of main rings to 5% 
– Address age of main rings

• Saturn’s ionosphere, innermost radiation belts & 
inner D ring particles
– Measure in situ plasma of Saturn’s ionosphere, 

innermost radiation belts and D ring for the first 
time

– In situ observations of Saturn’s auroral
magnetosphere at solstice

• Highest resolution main ring observations 
– First Active Radar of the Rings

• Highest resolution Saturn atmospheric studies 
including polar observations and aurora

Cassini Saturn science complements that from Juno mission to Jupiter! 

Summary
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