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Challenge of Deep Space 
Communications with Radio Signals

• Communications performance decreases as the square of the distance
• Jupiter is nearly 1 billion  km away, while a GEO Earth satellite is about 

40 thousand km away
• ~87 dB (~1/2 billion times) harder from deep space!

Relative Difficulty

Place Distance Difficulty

Geo 4x104 km Baseline

Moon 4x105 km 100

Mars 3x108 km 5.6x107

Jupiter 8x108 km 4.0x108

Pluto 5x109 km 1.6x1010
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Challenge of Deep Space Communications

Power received by  the 70m DSN antenna from Voyager is 
so small that if it were to be accumulated for 10 trillion 

years it can power a refrigerator light bulb for 
ONE SECOND
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Spacecraft communications are carried 
on electromagnetic waves that travel 
between ground stations and spacecraft   
at the speed of light

Electromagnetic waves are generally cm in 
length.  The wave shown here is 3.6 cm in 
length – the wavelength of a 8.4 GHz signal

EM Wave Communication
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The Start of Radio Science

Interaction between 
gas constituents of 
planetary atmosphere 
and electromagnetic 
signals!

Perturbations in 
phase and amplitude 
due to “optical” 
properties of gas.
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• It became apparent with early missions 
that occultations by planetary 
atmospheres would affect the quality of 
radio communications

• One person’s noise is another’s data
• Study the atmospheric properties

– And other aspects of planetary 
science, solar science, and 
fundamental physics

• A recognized field of solar system 
exploration with instrument distributed 
between spacecraft & ground stations

The Field of Spacecraft Radio Science
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Occultation by the atmosphere of Mars

Occultation by the atmosphere of the Sun

Radio Occultation
Powerful Tool to Investigate Structure of Planetary Atmosphere
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Phase ==> length ==> refractive angle ==> refractivity ==> 
number density ==>column pressure ==> temperature  

Radio Atmospheric Occultation Methodology
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Atmospheres of Giant Planets

Occultations of 
Voyager 2 by 4 
outer planets
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Source: D. Hinson

Atmosphere of Mars from MGS Occultations
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Doppler Observable
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• Propagation
– Study media
– Remove effects of forces

• Gravitation
– Study forces
– Remove effects of media

Time Share Example

Mars Global Surveyor Radio Science 
Team conducted both types of 

experiments back-to-back every orbit for 
thousands of orbits: Propagation to 

study the atmosphere and Gravitation to 
study the interior

Radio Science Experiment Types
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Utilize the telecommunication links between spacecraft and 
Earth to examine changes in the phase/frequency, amplitude, 
and polarization of radio signals to investigate:

– Planetary atmospheres

– Planetary rings

– Planetary surfaces

– Planetary interiors

– Solar corona and wind

– Comet mass flux

– Fundamental Physics

Radio Science Investigations
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• Study properties of planetary media along propagation path
– Atmosphere: temperature-pressure profile
– Ionosphere: electron density
– Rings: particle structure and size distribution
– Byproducts: planetary shapes

• Observables:
– Amplitude and phase

• Refraction
• Scattering
• Edge diffraction
• Multi-path

Radio Occultations
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Three Cassini Signals Occulted by Titan
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Saturn’s Rings In the Cassini Era

E. A. Marouf, 2007
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Gravity and Planetary Interiors

• Determine the mass and mass distribution
– GM of body or system (planet + satellites)
– Gravity field: higher order expansion of mass distribution

• Constrain models of internal structure
– Examples: ocean on Europa

• Improve orbits and ephemerides
• Observables:

– Doppler and range: precise measurement of relative motion
• Doppler accuracy ~ 0.03 mm/s at X, few microns/s at Ka-band
• Ranging accuracy to ~ 1 meter
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Surface gravity anomalies complete to degree and order 90 with respect to a 
reference ellipsoid (model MRO110B)

Konopliv et al., 2011

The Gravity Field of Mars
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GRAIL Reveals Lunar Interior Structure
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x

Surface and sub-surface effects
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Tidal observations by 
Cassini gravity team

Titan: Iess et al., 2011 & 2012
Enceladus: Iess et al., 2014

Moons of Large Planets

Models of the 
interiors of the 

Galilean satellites 
based on magnetic 

and gravity 
measurements

Titan

Enceladus

© 1999 Calvin J. Hamilton
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Source: R.A. Simpson & M. Patzold

Direct Carrier
Surface Echo

Surface Characteristics

• Study properties of planetary surfaces
– Roughness & dielectric constant

• Observables:
– Ratio of received energy in same 

and opposite polarizations
• Configuration:

– Point to planet’s surface and 
receive echo on Earth

– Record both polarizations
– Special noise calibration 

procedures
– Open-loop receivers
– One-way downlink
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Deep Space Station 70 meter diameter

Deep Space Station 34 meter diameter

Largest Instrument in Solar System
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Not possible without Deep Space Network

Composite image to show relative size of 70-meter diameter station
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TRANSMITTERS
Ka-BAND

TRANSLATOR

X-BAND
RECEIVER

Ka-BAND

S-BAND

X-BAND

USO
SELECT

AUXILIARY
OSCILLATOR

USO

INHIBIT

ENABLE

YES

NO

RCVR
IN LOCK?

OFFON

TWNC

CASSINI

TRANSMITTER

FREQUENCY
AND TIMING
SUBSYSTEM

CLOSED LOOP
RCVR/RECORDER

SUBSYSTEM

OPEN LOOP
RCVR/RECORDER

SUBSYSTEM

DSS

Uplink Possibilities
X-band   ~ 7.9 GHz
Ka-band ~ 34 GHz

Downlink Possibilities
S-band   ~ 2.3 GHz
X-band   ~ 8.4 GHz
Ka-band ~ 32 GHz

HGA Gain ~ 47 dBi
Power ~ 20 W
EIRP ~ 88.6 dBm
Digital communication: BPSK
Bit rates: 5 bps to 248 kbps
Phase modulated onto carrier

or subcarriers of 360 or 22.5 kHz 
Reed-Solomon outer code

Convolutional inner code

Cassini Meets Marconi
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Can You Hear Me Now?

PR= Received power

PT=Total transmitted power 
LT= Transmission Circuit loss
GT=Transmitting antenna gain
LTP= Pointing loss of transmitting antenna
LS=space loss (distance squared)
LA= Atmospheric attenuation
LP=Polarization loss
LRP=Pointing loss of receiving antenna
GR=Receiving antenna gain
LR= Receiving circuit loss
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Future Directions

Fundamental limits on Radio Science experiments, especially radio 
occultation is received signal-to-noise ratio.  This can be improved by:

• Arraying of Stations

• Uplink Radio Science

• Optical Science

• Spacecraft-to-spacecraft link science
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The Future Is Now

• New Horizons pioneered a new 
mode of Radio Science 

• Occultation in uplink mode
– Transmit from Deep Space 

Network and receive onboard 
the spacecraft 

– Special processor onboard
– Signal-to-Noise advantage of 

~1000 times!
• Key to REX success at vast 

distance across the solar system
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New Horizons REX Uplink Radio Occultation

DSS-14

New 
HorizonsThrough Pluto’s

Atmosphere
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New Horizons REX Configuration

Prime Uplink 
Backup Uplink DSS-24 DSS-43DSS-25 DSS-45DSS-14 DSS-34

New 
Horizons
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Real-Time DSN Uplink Display
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New Horizons Radioscience EXperiment (REX)

• New Horizons Radio Science Experiments (REX) is a custom-
made instrument from Stanford University
– Card installed in spacecraft radio
– Ultra-Stable Oscillator (JHU-APL) for reference

Science Objectives:
• Investigate the atmospheric structure of Pluto
• Measure the gravity field of the Pluto system
• Explore the surface characteristics of Pluto
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x

This new image of an area on Pluto's largest moon Charon has a captivating feature, a 
depression with a peak in the middle, shown here in the upper left corner of the inset.
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The latest spectra from New Horizons Ralph instrument reveal an abundance of 
methane ice, but with striking differences from place to place across the frozen 
surface of Pluto.
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What Defines the Solar System
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Earth-Like Exo-Planets
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