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Expansion Timeline of the Universe

Figure: A representation of the evolution of the universe over 13.77
billion years. Credit: NASA / WMAP Science Team
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Introduction

Current and future ground and space-based missions are designed to not only detect, but map out with
increasing precision, details of the universe in its infancy to the present-day.

Each of these instruments return observations with their own unique insight into the universe we want to
understand, as well as their own peculiar response to the signal they are designed to detect.

As a result, we are faced with the increasingly important challenge of analyzing and interpreting
observations from a wide variety of instruments to form a coherent view of the universe.

How can we make inferences about our universe from observations returned from a diverse collection of
instruments spanning a wide range of frequencies and spatial scales?

Data analysis in cosmology involves challenging problems of Bayesian inference in the context of spatial
random fields - including inference for Gaussian spatial random fields, source separation, and data
assimilation and parameter estimation for non-linear dynamics.

For this talk - brief overview of cosmology as it leads to inference problems that have applications in other
fields. (examples - data fusion from multiple sources at multiple resolutions, data assimilation in climate
science or weather prediction, etc.)



Gravitational Collapse Picture of Large-Scale
Structure Formation

Figure: A representation of the evolution of the universe
over 13.77 billion years. Credit: NASA / WMAP Science Team.

Quantum (Gaussian) fluctuations generate small
amplitude initial density perturbations.

These density perturbations evolve linearly while the
universe is in a hot, dense, ionized state (a balance
between photon radiation pressure and gravity for small
amplitude density variations).

The universe expands and cools eventually allowing
neutral matter to form, and allowing photons to travel
long distances without scattering. We observe photons
from this epoch in all directions at microwave frequencies
- the brightness temperature of the photons show small
variations which trace out the initial density
perturbations at the time of last scattering.

The initial (Gaussian) density fluctuations after
last-scattering undergo non-linear gravitational collapse
(approximately the fluid equations coupled to gravity).

We observe the resulting 3-dimensional distribution of
matter with surveys at visible and other wavelengths.

Because of the finite speed of light and the expansion of the
universe, we are able to observe the history of the universe by a
joint analysis of measurements at different wavelengths.



Bayesian Inference in Cosmology

We have a very detailed, physically motivated, theoretical framework in cosmology - parametric details of
which we want to learn from measurements.

We have one universe to observe, so we want to formulate a Bayesian approach which respects the
underlying physics and details of the theory as closely as possible!

A very diverse range of inference problems are encountered when confronting theory and measurement in
cosmology - a Bayes’ posterior in this situation is derived in detail from a specification of the simulation of
measurement in the context of the theoretical framework.

While conceptually straightforward, this quickly leads to computational problems

Two challenges encountered in Bayesian inference for cosmology:

Analytically known posterior functional form, yet computationally intractable to evaluate for large
datasets
Marginal Posterior unknown - and joint sampling for dynamical parameters and state history is
extremely challenging due to high-dimensionality and non-Gaussian structure

We will review these problems and potential solutions along with an indication of breakthroughs needed



Inference Problem 1 - Analysis of the Cosmic
Microwave Background

What are the data?	
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Inference Problem 2 - Analysis of Large-Scale
Structure
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larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.
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When expressed in units of the critical density required for a flat cos-
mic geometry, the mean density of dark matter is usually denoted by 
Ωdm. Although a variety of dynamical tests have been used to constrain 
Ωdm, in general such tests give ambiguous results because velocities are 
induced by the unseen dark matter and the relation of its distribution 
to that of the visible tracers of structure is uncertain. The notion of a 
substantial bias in the galaxy distribution relative to that of dark matter 
was introduced in the 1980s to account for the fact that different samples 
of galaxies or clusters are not directly tracing the underlying matter 
distribution15–17. Defined simply as the ratio of the clustering strengths, 
the ‘bias function’ was also invoked to reconcile low dynamical estimates 
for the mass-to-light ratio of clusters with the high global value required 
in the theoretically preferred flat, Ωdm = 1 universe. But because massive 
clusters must contain approximately the universal mix of dark matter 
and baryons (ordinary matter), this uncertainty is neatly bypassed by 
comparing the measured baryon fraction in clusters with the universal 
fraction under the assumption that the mean baryon density, Ωb, is the 
value inferred from Big Bang nucleosynthesis18. Applied to the Coma 
cluster, this simple argument gave Ωdm ≤ 0.3 where the inequality arises 
because some or all of the dark matter could be baryonic18. This was 
the first determination of Ωdm < 1 that could not be explained away by 
invoking bias. Subsequent measurements have confirmed the result19 
which also agrees with recent independent estimates based, for example, 
on the relatively slow evolution of the abundance of galaxy clusters20,21 or 
on the detailed structure of fluctuations in the microwave background 
radiation22.

The mean baryon density implied by matching Big Bang nucle-
osynthesis to the observed abundances of the light elements is 
only Ωbh2 ≈ 0.02, where h denotes the Hubble constant in units of 
100 km s–1 Mpc–1. Dynamical estimates, although subject to bias uncer-
tainties, have long suggested that Ωm = Ωdm + Ωb ≈ 0.3, implying that the 
dark matter cannot be baryonic. Plausibly it is made up of the hypotheti-
cal elementary particles postulated in the 1980s, for example axions or 
the lowest mass supersymmetric partner of the known particles. Such 

low estimates of the mean matter density Ωm are incompatible with the 
flat geometry predicted by inflation unless the Universe contains an 
additional unclustered and dominant contribution to its energy density, 
for example a cosmological constant Λ such that Ωm + ΩΛ ≈ 1. Two large-
scale structure surveys carried out in the late 1980s, the APM (automated 
photographic measuring) photographic survey23 and the QDOT redshift 
survey of infrared galaxies24, showed that the power spectrum of the 
galaxy distribution, if it traces that of the mass on large scales, can be 
fitted by a simple CDM model only if the matter density is low, Ωm ≈ 0.3. 
This independent confirmation of the dynamical arguments led many 
to adopt the now standard model of cosmology, ΛCDM.

It was therefore with a mixture of amazement and déjà vu that cos-
mologists greeted the discovery in 1998 of an accelerated cosmic expan-
sion25,26. Two independent teams used distant type Ia supernovae to 
perform a classical observational test. These ‘standard candles’ can be 
observed out to redshifts beyond 1. Those at z ≥ 0.5 are fainter than 
expected, apparently indicating that the cosmic expansion is currently 
speeding up. Within the standard Friedmann cosmology, there is only 
one agent that can produce an accelerating expansion: the cosmological 
constant first introduced by Einstein, or its possibly time- or space-
dependent generalization, ‘dark energy’. The supernova evidence is 
consistent with ΩΛ ≈ 0.7, just the value required for the flat universe 
predicted by inflation.

The other key prediction of inflation, a density fluctuation field con-
sistent with amplified quantum noise, received empirical support from 
the discovery by the COsmic Background Explorer (COBE) satellite in 
1992 of small fluctuations in the temperature of the cosmic microwave 
background (CMB) radiation27. These reflect primordial density fluc-
tuations, modified by damping processes in the early Universe which 
depend on the matter and radiation content of the Universe. More recent 
measurements of the CMB28–32 culminating with those by the WMAP 
(Wilkinson Microwave Anisotropy Probe) satellite22 have provided a 
striking confirmation of the inflationary CDM model: the measured 
temperature fluctuation spectrum is nearly scale-invariant on large 

Figure 1 | The galaxy distribution obtained from 
spectroscopic redshift surveys and from mock 
catalogues constructed from cosmological 
simulations. The small slice at the top shows the 
CfA2 ‘Great Wall’3, with the Coma cluster at the 
centre. Drawn to the same scale is a small section 
of the SDSS, in which an even larger ‘Sloan 
Great Wall’ has been identified100. This is one of 
the largest observed structures in the Universe, 
containing over 10,000 galaxies and stretching 
over more than 1.37 billion light years. The cone 
on the left shows one-half of the 2dFGRS, which 
determined distances to more than 220,000 
galaxies in the southern sky out to a depth of 
2 billion light years. The SDSS has a similar 
depth but a larger solid angle and currently 
includes over 650,000 observed redshifts in the 
northern sky. At the bottom and on the right, 
mock galaxy surveys constructed using semi-
analytic techniques to simulate the formation 
and evolution of galaxies within the evolving 
dark matter distribution of the ‘Millennium’ 
simulation5 are shown, selected with matching 
survey geometries and magnitude limits.
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(Credit: The Large-Scale Structure of the Universe, Springel, V.; et al; , Nature, Vol. 440, p. 1137, April 2006)

Left Figure: Slices at different times from an N-body simulation of the dark matter distribution evolving
according to gravitational collapse in an expanding universe as determined by a cosmological model.

Right Figure: A semi-analytic model prediction of how luminous galaxies trace this dark matter
distribution. The history of the distribution is displayed by the slice outputs at sequentially later times.

The challenge is to relate the observed redshift survey data to the underlying dark matter distribution as
shown on the left, as well as determine the cosmological parameters governing the evolution.



Simulation and Inference

Important first step - write down a ”joint density” of all degrees of freedom in the physical model, even if
they are not observable!

We have the joint density given in a ”forward” manner determined by specifying how to simulate
observations for any parameter in our class of models and the data D)

Model Parameters Ω
”True” field, signal, etc. X
Data D
Joint Density p(D,X,Ω) = p(D|X)p(X|Ω)p(Ω)

(1)

Simulation and Inference involve different conditional densities inherited from the common joint density on
”everything”!

Simulation conditions on the model -

p(D,X|Ω) = p(D|X)p(X|Ω) (2)

Inference conditions on the data

p(Ω, X|D) =
p(D|X)p(X|Ω)p(Ω)∫

d(Ω′, X′) p(D|X′)p(X′|Ω′)p(Ω′)
(3)



Bayesian Inference for the CMB

Simplest data model - the observed sky at k = 1 : K frequencies is

dk = Bks + nk (4)

( with instrument response function (”beam”) Bk , underlying true sky s, and instrumental noise n with
covariance Nk).

Factors in the joint density (i.e. p(d, s,Ω) = p(d|s)p(s|Ω)p(Ω)) for CMB analysis:

−2 log p(d|s) ∝ (d− Bs)N−1
(d− Bs)

−2 log p(s|Ω) = sC
−1

(Ω)s + log det |C(Ω)| (5)

Given measurements we have information about details of the cosmological theory and the underlying true
sky,

p(Ω, s|d) =
p(d, s,Ω)∫

d(Ω′, s′) p(d, s′,Ω′)
=
e−(d−Bs)N−1(d−Bs)−sC−1(Ω)s−log |C(Ω)|

Z(D)
(6)

Bayes’ marginal posterior in cosmological (theory) parameters
∫
ds p(Ω, s|d) is:

−2 log p(Ω|d) ∼ D[N + C(Ω)]
−1
D + log |N + C(Ω)| (7)

Today’s CMB experiments return maps of the sky with Npixel > 106 - It is already intractable to directly

evaluate the posterior for any Ω due to the O(N3
pixel) expense of computing the determinant.



Markov Chain Monte Carlo Sampling

Instead of direct likelihood evaluation for cosmological parameters, we explore Markov chain algorithms
jointly sampling estimates of the CMB map and parameters

General MCMC - We can make proposals for both new parameters and CMB maps, followed by an accept
or reject step

Gibbs sampling - ( a special case of a Markov chain with accept probability unity) proceeds by interatively
sampling from the conditionals

sn+1 ← p(s|C(Ωn), D)

Ωn+1 ← p(Ω|sn+1) (8)

(where note conditional independence of the data, p(Ω|s, d) = p(Ω|s)).

For Gaussian fields, we found that Gibbs sampling works well in the high signal to noise regime (large
spatial scales), while it was necessary to develop a special MCMC method for low signal-to-noise (small
spatial scales).

This will be a common problem when using Gaussian priors for spatial random fields when we have data
with different measurement error on different spatial scales!



Gibbs Sampling - The map making step . . .

Fig. 1.—Examples of the maps produced in one step of the Gibbs sampler. Top panel: The full-sky, noiseless Gibbs sample, s. Middle panel: The mean field
(Wiener-filtered) map, x. Bottom panel: The fluctuation map, y.
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Fig. 1.—Examples of the maps produced in one step of the Gibbs sampler. Top panel: The full-sky, noiseless Gibbs sample, s. Middle panel: The mean field
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The conditional p(s|Ω, D) is Gaussian -

−2 log p(s|Ω, D) ∼

∑
k

(dk − Bks)N
−1
k (dk − Bks)

− sC−1
(Ω)s (9)

Exact samples for any signal measurement covariance matrix generated by solving the linear problem(s)

C−1
+
∑
k

B
T
k N
−1
k Bk

 s =

∑
k

B
T
k N
−1
k dk


C−1

+
∑
k

B
T
k N
−1
k Bk

 ξ = C
−1/2

ω0 +

∑
k

B
T
k N
−1/2
k

ωk

 (10)

(where {ω0, ω1:K} are all independent white noise maps).

Our exact sample is s + ξ, since we can show

Cov(ξ) =

C−1
+
∑
k

B
T
k N
−1
k Bk

−1

(11)



Gibbs Sampling - The parameter update step . . .

in practice the two equations are solved simultaneously by
solving for the sum of x and y, in order to reduce the total CPU
time.

Finally, we point out that even though the Gibbs sampling
technique is a Bayesian method, a frequentist view may be
taken by choosing a uniform prior. In that case, the procedure
reduces to simply exploring the joint likelihood, and fre-
quentist concepts such as the maximum likelihood estimate
may be established.

2.2. Consistent Treatment of Monopole
and Dipole Contributions

One of the most elegant features of this formalism is its
ability to incorporate virtually any real-world complication, as
discussed by Jewell et al. (2004) and Wandelt et al. (2004). A
few examples of this flexibility are applications to 1=f noise,
asymmetric beams, noncosmological foregrounds, or arbitrary
sky coverage. However, in this paper we include only the
effects of the monopole and dipole contributions (which may
be thought of as foregrounds) and that of partial sky coverage,
given that our main scientific goal is to analyze the fairly well-
behaved WMAP data.

The question regarding monopole and dipole contributions
has gained renewed importance during the previous year, given
the very active debate concerning the quadrupole seen in the
WMAP data. This quadrupole appears to be small compared
with the best-fit cosmological model (Spergel et al. 2003;
Efstathiou 2003a; de Oliveira-Costa et al. 2004), and several
authors have considered what this may imply in terms of new
physics. However, the exact significance of this anomaly is dif-
ficult to assess for several reasons, but mainly because of un-
certainties in the foreground subtraction process (Eriksen et al.
2004; Slosar & Seljak 2004). Methodology issues for esti-
mating the lowest multipole amplitudes have also been pointed
out (Efstathiou 2003b). Strongly related to both these issues is
the fact that noncosmological monopole and dipole contribu-
tions may couple into the other low-order modes through in-
complete sky coverage.

Themost commonway of handling this latter problem is to fit
a monopole and dipole to the incomplete sky, including internal
coupling caused by the sky cut, and then simply subtract the
resulting best-fit components from the data. However, this
procedure neglects the noise correlations that are introduced by

removing any fitted templates. The Gibbs sampling framework
allows a statistically more consistent approach: rather than di-
rectly subtracting the fitted monopoles and dipoles from the
data, one may marginalize over them through sampling, and
thus recognize the inherent uncertainties involved.
As always in Bayesian analyses, one has to choose a prior,

and the most natural choice in this case is a uniform prior. This
corresponds to saying that we do not know anything about
these components. For analytic computations and proofs, how-
ever, it is more convenient to define this as a Gaussian with
infinite variance, which is just a different way of parameter-
izing a uniform prior. It should be noted that a uniform prior
does not mean that these components are unrestricted, but,
rather, it simply means that their values are determined by the
data alone.
Again, general formalisms for handling this type of problem

were described by Jewell et al. (2004) and Wandelt et al.
(2004), and we will only repeat the operational steps here, in a
notation suitable for our purposes. Let us first define a Npix ;
4 template matrix T containing the four real spherical har-
monics in pixel space,

T ¼ Y00;Y1"1;Y10;Y11ð Þ; ð7Þ

where Y‘m ¼ Y‘m(!1;"1); : : : ; Y‘m(!Npix
;"Npix

)
! "T

and

Y00(!;") ¼ 1=
ffiffiffiffiffiffi
4#
p

; ð8Þ

Y1"1(!;") ¼
ffiffiffiffiffiffiffiffiffiffi
3=4#

p
sin ! sin "; ð9Þ

Y10(!;") ¼
ffiffiffiffiffiffiffiffiffiffi
3=4#

p
cos !; ð10Þ

Y11(!;") ¼
ffiffiffiffiffiffiffiffiffiffi
3=4#

p
sin ! cos ": ð11Þ

Note that T is a projection matrix onto the subspace spanned
by the corresponding templates.
Next we define a vector of template amplitudes wk ¼

(ak00; ak1"1; ak10; ak11)
T, letting the amplitudes be different for

each channel, since we have no reason to assume that these
components are frequency independent. Thus, the monopole
and dipole contribution to the kth channel is tk ¼ Twk .
We now want to sample from the conditional distribution

P(wk jdk ; s), and this is done (assuming the infinite variance
prior) by solving the following equation:

TTN"1k T
$ %

wk ¼ TTN"1k rmd
k þ $k ; ð12Þ

where the monopole and dipole residual map is rmd
k ¼ dk "

Aks, and

$k ¼

YT
00 N"1=2k !(1)

k

YT
1"1 N"1=2k !(2)

k

YT
10 N"1=2k !(3)

k

YT
11 N"1=2k !(4)

k

2

666664

3

777775
: ð13Þ

Here !(i)
k are white noise maps of vanishing mean and unit

variance.
The next step in traditional Gibbs sampling would now be to

sample from the conditional density P( pmdjwk), where pmd are
the parameters of the probability distribution describing the
monopoles and dipoles. However, since we have chosen a very
special prior, namely one with infinite variance, this distribu-
tion does not change, and no sampling is required.

Fig. 2.—Spectra corresponding to the maps in Fig. 1. The red line shows
the spectrum of the Wiener-filtered map and is a biased estimate of the un-
derlying spectrum. Therefore, the Gibbs sampler adds a fluctuation term to the
Wiener-filtered map, to yield an unbiased estimate of the true spectrum.
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up to a normalization constant. Equation (13) is straight-
forward to compute analytically, and an arbitrarily exact
representation of the posterior (with increasing NG) may
therefore be established conveniently by means of
Eqs. (11) and (13).

C. Comparison with brute-force likelihood evaluation

In order to verify that the method works as expected, we
apply it to a simulated map, and compare the results to a
brute-force evaluation of the likelihood. Since this like-
lihood computation requires inversion of the signal plus
noise covariance matrix, we limit ourselves to a low-
resolution case, with properties similar to those of the
COBE-DMR data [26], but with significantly lower noise.
Specifically, we simulate a sky using the best-fit WMAP
power-law spectrum, including multipoles between ‘ # 2
and 30. We then convolve this sky with the DMR beam, add
0.5% of the 53 GHz DMR noise (in order to regularize the
covariance matrix as the beam drops off), and finally we
apply the extended DMR sky cut.

This simulation is then analyzed both using the Gibbs
sampling and BR machinery as described above, and by
computing the full likelihood over a parameter grid using
the Cholesky decomposition method of Górski [27]. The
model power spectrum chosen for this exercise is of the

form

C‘!q; n" # q
!
‘
‘0

"
n
Cfid
‘ ; (14)

where q is an amplitude parameter, n is a spectral index, ‘0
is a reference multipole, and Cfid

‘ is a fiducial power
spectrum, which we take to be that of a flat !CDM model
that fits the data well. The fiducial spectrum is chosen to be
the input spectrum, and consequently, we should expect the
likelihood of the parameters to peak near !q; n" # !1; 0".

The comparison between the brute-force evaluation and
the BR approximation is not quite as straightforward as one
would like. The problem lies in how to truncate the spheri-
cal harmonics expansion at high ‘’s. The brute-force like-
lihood computation requires that the full signal component
is contained in the included harmonic expansion, which
means that the noise power has to be larger than the
convolved signal power before truncation. On the other
hand, the Gibbs sampling approach requires a large num-
ber of samples to converge in this low signal-to-noise
regime. The simulation was therefore constructed as a
compromise: a very small amount of noise was added to
make the covariance matrix well behaved at the very high-
est ‘’s included, but not more than necessary. Still, small
differences between the two approaches must be expected.
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The parameter conditional is independent of the data p(Ω|s, d) = p(Ω|s) and has the form

−logp(Ω|s) ∼

∑
l

(l + 1/2)

(
σl

Cl(Ω)

)
+ log |Cl(Ω)|

 (12)

(with σl an empirical power spectrum estimate for inferred signal CMB map s).

This generalizes to polarization (more generally multi-variate quantities at each pixel) with the inverse
Wishart distribution.



Computational Challenges for Constrained Gaussian
Realizations

While we have an analytic solution for exact Gaussian samples, solving the associated linear equations are
typically NOT easy for large data sets with missing data (in the CMB analysis context we cannot see
through the galaxy). This will be a very common problem when combining measurements from different
experiments with different spatial coverage.

The spatial noise N is not uniform due to the scan strategy of the instrument (however, usually close to a
diagonal matrix in the pixel basis).

The signal matrix C here is diagonal in the spherical harmonic basis (a rotationally invariant random field).
In other contexts we often want to model a spatial process with eigenmodes that capture spatial
correlations that are physically distinct from the spatial properties of measurement error.

These complications lead to major computational challenges for solving the linear problem (with arbitrary
right hand side X)

I +
∑
k

C
+1/2

B
T
k N
−1
k BkC

+1/2

Y = C
+1/2

X (13)

Solving these types of problems for large spatial datasets, especially with missing data, requires
preconditioning for iterative linear solvers to work efficiently.



Multi-Grid Approach to Constrained Realizations
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Figure 1. Eigendecomposition of the CR system using a diagonal precon-
ditioner. Top panel: the eigenvalues of diag(A)−1A for the 143 GHz Planck
channel with a mask covering 40% of the sky, smoothed with a 5.◦6 FWHM
beam and truncated at !max = 95. Bottom panel: a selection of eigenvectors
corresponding to very low eigenvalues. The structure of the mask (bottom) is
clearly visible in the eigenvectors.
(A color version of this figure is available in the online journal.)

signal-to-noise ratio of a Planck-like experiment, for example,
independent of preconditioners or number of iterations; down-
grading and adding regularization noise is required to produce
robust results.

3. THE MULTI-LEVEL SOLVER

3.1. Motivation for a Multi-level Method

The matrix A of Equation (4) is defined in SH domain,
and describes the coupling strength between pairs of (!,m)
and (!′,m′). Except in unrealistic scenarios with very simple
instrumental noise and mask, we have found no pattern in the
magnitudes of the matrix coefficients A!m,!′m′ that is consistent
enough to be exploited in a solver.

By moving to pixel domain, however, we can create such an
exploitable pattern in the magnitudes of the matrix coefficients.
In Section 3.3 we will construct a corresponding pixel-domain
matrix Â that is localized, in the sense that Âij has small
magnitude (less than 1% of Âii) unless pixels i and j are very
close together on the sphere.

It is no surprise that the N−1 term of Equation (4) enjoys
this property, since we have assumed that instrumental noise is
uncorrelated between pixels. When it comes to the S−1 term,
we note that 1/C! is roughly proportional to !(! + 1), at least

Figure 2. Effect of the error smoother/approximate inverse M̂. Top: relative
error ‖x! − xtrue,!‖/‖xtrue,!‖. For each iteration, the error smoother developed
in Section 3.5 is applied on a HEALPix Nside = 512 grid. The error smoother is
only able to get closer to the solution for some part of the frequency spectrum,
and quickly stagnates since no improvement is made to the larger or smaller
scales. Bottom: the left patch shows the initial error when starting at x = 0,
while the right patch shows the error after the first iteration. The remaining
large-scale errors can be represented on a coarser grid. This observation leads
to the multi-level algorithm.
(A color version of this figure is available in the online journal.)

for ! ! 1000. These are the eigenvalues of the Laplacian on the
sphere, with Y being the corresponding eigenbasis. Therefore
we can hope that a projection of S−1 to pixel domain should be
close to a Laplacian. The Laplacian is often approximated with
a matrix where Âij = 0 unless pixel i and j are neighbors or
i = j . While our case will be less perfect, it still suggests that
multi-level methods can be very efficient, since those are highly
successful for PDEs involving the Laplacian.

In Section 3.5, we exploit the localization properties in pixel
domain to develop an approximate inverse M̂ ≈ Â−1. Figure 2
demonstrates the use of this approximate solver as part of a
simple stationary method

x ← x + M̂(b − Âx), (6)

where we initialize x ← 0 and then iteratively update the
solution. Note that if we replace M̂ with diag(A)−1, Equation (6)
represents what are known as Jacobi iterations.

The problem that is evident from Figure 2 is that M̂ will only
make improvements to one part of the frequency spectrum—
namely, the highest frequencies that can be represented on the
grid used. This is the typical case when multi-level methods are
applied; iterations of the form of Equation (6) are usually only
efficient at resolving the relations between pixels/elements that
are strongly coupled, which, when Â is localized, translates to
resolving the solution at highest frequencies. Little or no im-
provement is made between pixels that are weakly or indirectly

4

The Constrained Realization system is symmetric and
positive definite, which suggests the use of the CG
algorithm. For the behavior of CG and other Krylov
methods, we are primarily interested in the eigen-spectrum
after preconditioning

Figure on left: Eigen-decomposition of the CR system using
a diagonal preconditioner. Top panel: the eigenvalues for a
(smoothed) 143 GHz Planck channel with a mask covering
40% of the sky. Bottom panel: a selection of eigenvectors
corresponding to very low eigenvalues. The structure of the
mask (bottom) is clearly visible in the eigenvectors.

Problematic feature is the exponential drop in the
eigenvalues (theoretical results indicate that the CG search
needs at least one iteration per eigenvalue located in
exponentially increasing parts of the eigenspectrum,)

Exponential spectral feature is due to large-scale modes in
the ”missing data” regions!

For this problem, the power spectrum of the signal process

is roughly (spatial scale)−2. This suggests the inverse

covariance matrix is something like ∇2. This motivated an
exploration of a multi-grid approach known to be useful in
numerical solutions of elliptic PDE’s.

(For details see: D. S. Seljebotn et al, Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February)



Problems with Slow Mixing of Gibbs Sampling at
Small Spatial Scales

The problem - infer the signal and covariance matrix of a spatial Gaussian process of physical interest
observed with different experiments with different resolution and spatial coverage - measurement error
therefore varies with scale.

It is common for global coverage to be at relatively low spatial resolution, while high resolution might only
be probed with experiments with smaller regions.

The end result - it is common for measurement error (and uncertainty) to greatly increase at the smallest
spatial scales.

This presents a problem when jointly inferring physical covariance matrices and the signal with Gibbs
sampling! The conditional p(C|s, d) = p(C|s) is typically very concentrated about the estimator for
current sample s, and much more concentrated than the total confidence interval of the posterior for the
eigenvalues (associated with ”small spatial scale modes”) of the covariance matrix!

We somehow need to find an MCMC algorithm which can make large jumps in the covariance matrix in the
subspace characterizing small spatial scales - and yet to have a reasonable acceptance probability we need
to adjust the signal map as well.

Propose independent of current state - optimal for mixing length but made difficult by the appearance of
intractable determinant ratios in the accept probability, i.e. propose with some approximate p̃(Ω|D)
followed by exact map update p(s|Ω, D) gives

A = min

[(
p(Ω2, s2|D)

p(Ω1, s1|D)

)(
q(s|Ω1, D)p̃(Ω1|D)

|N + C(Ω1)|

)(
|N + C(Ω2)|

q(s|Ω2, D)p̃(Ω2|D)

)]
(14)



Specialized MCMC for Faster Mixing at Small
Spatial Scales

Goal - make large changes in the covariance matrix to quickly mix in MCMC.

Consider proposals of the form:

ρ(Ω2, s2|Ω1, s1) = δ [s2 − F(s1,Ω2,Ω1)] p̃(Ω2|d) (15)

(p̃ any approximate marginal posterior) where we make a deterministic change in the map variables
according to some function F(s1,Ω2,Ω1).

Example - consider a move of the form which leaves sC−1(Ω2)s invariant,

s2 = C
+1/2

(Ω2)C
−1/2

(Ω1)s1 (16)

The condition of detailed balance including deterministic moves requires the consideration of some
technical points (requires including the determinant of the Jacobian of the functional mapping in the
derivation of the accept probability).

For this proposal we have the accept probability

A = min

1,

 e−(d−Bs2)N−1(d−Bs2)

e−(d−Bs1)N−1(d−Bs1)

( p̃(Ω1|D)

p̃(Ω2|D)

) (17)

(For technical details - Jewell et al, The Astrophysical Journal, 697:258268, 2009 May 20)

We can therefore make large moves in MCMC with the covariance matrix where the measurement error
is large (small spatial scales).
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larger than the value required by cosmology. Postulating instead a con-
nection to the energy scale of quantum chromodynamics would still 
leave a discrepancy of some 40 orders of magnitude. A cosmological 
dark energy field that is so unnaturally small compared with these par-
ticle physics scales is a profound mystery. 

The evidence for an accelerating universe provided by type Ia super-
novae relies on a purely phenomenological calibration of the relation 
between the peak luminosity and the shape of the light curve. It is this 
that lets these supernovae be used as an accurate standard candle. Yet 
this relation is not at all understood theoretically. Modern simulations 
of thermonuclear explosions of white dwarfs suggest that the peak lumi-
nosity should depend on the metallicity of the progenitor star66,67. This 
could, in principle, introduce redshift-dependent systematic effects, 
which are not well constrained at present. Perhaps of equal concern is the 
observation that the decline rate of type Ia supernovae correlates with 
host galaxy type68,69, in the sense that the more luminous supernovae 
(which decline more slowly) are preferentially found in spiral galaxies. 

Interestingly, it has also been pointed out that without the evidence 
for accelerated expansion from type Ia supernovae, a critical density 
Einstein–de Sitter universe can give a good account of observations of 
large-scale structure provided the assumption of a single power  law for 
the initial inflationary fluctuation spectrum is dropped, a small amount 
of hot dark matter is added, and the Hubble parameter is dropped to the 
perhaps implausibly low value h ≈ 0.45 (ref. 70).

The CMB temperature measurements provide particularly compelling 
support for the paradigm. The WMAP temperature maps do, however, 
show puzzling anomalies that are not expected from gaussian fluctua-
tions71–73, as well as large-scale asymmetries that are equally unexpected 
in an isotropic and homogeneous space74,75. Although these signals could 
perhaps originate from foregrounds or residual systematics, it is curious 
that the anomalies seem well matched by anisotropic Bianchi cosmologi-
cal models, although the models examined so far require unacceptable 
cosmological parameter values76. Further data releases from WMAP 
and future CMB missions such as PLANCK will shed light on these 

Figure 4 | Time evolution of the cosmic large-
scale structure in dark matter and galaxies, 
obtained from cosmological simulations of the 
ΛCDM model. The panels on the left show the 
projected dark matter distribution in slices 
of thickness 15 h–1 Mpc, extracted at redshifts 
z = 8.55, z = 5.72, z = 1.39 and z = 0 from the 
Millennium N-body simulation of structure 
formation5. These epochs correspond to times of 
600 million, 1 billion, 4.7 billion and 13.6 billion 
years after the Big Bang, respectively. The colour 
hue from blue to red encodes the local velocity 
dispersion in the dark matter, and the brightness 
of each pixel is a logarithmic measure of the 
projected density. The panels on the right show 
the predicted distribution of galaxies in the same 
region at the corresponding times obtained by 
applying semi-analytic techniques to simulate 
galaxy formation in the Millennium simulation5. 
Each galaxy is weighted by its stellar mass, and 
the colour scale of the images is proportional to 
the logarithm of the projected total stellar mass. 
The dark matter evolves from a smooth, nearly 
uniform distribution into a highly clustered state, 
quite unlike the galaxies, which are strongly 
clustered from the start.
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Challenges of LSS Inference

Figure credit : The Large-Scale Structure of the Universe,
Springel, V.; et al; , Nature, Vol. 440, p. 1137, April 2006

Random initial density perturbations (traced by the CMB)
subsequently undergo gravitational collapse in a background
uniformly expanding universe to form the observed ”cosmic
web”.

LSS data composed of the position and redshift of galaxies
clustered within dark matter halos.

Early on, and at large spatial scales, linearized
approximations work well.

Both current and future experiments are probing spatial
scales of the Universe where the dynamics are nonlinear!

A wealth of information to extract but mathematically and
computationally challenging due to the nonlinearity of the
dynamics.

Unlike CMB (Gaussian) analysis, a computationally feasible
implementation of an exact Bayesian approach to the
inference of cosmological parameters from these
measurements has not yet been fully developed.

Two approaches - ”direct” (as with the CMB, jointly
inferring the state history and parameters), and ”indirect”,
in which approximate likelihoods in terms of ”test
statistics” are used. Both approaches have to deal with
huge computational expense!



Large Scale Structure - Theory
Standard framework : we see luminous matter (galaxies) clustered within dark matter halos, which have
formed through gravitational collapse in a background uniformly expanding universe.

Dark matter phase-space distribution evolves according to the Vlasov-Poisson equation (in expanding
coordinates)

∂tf(x, p, t) +
p

ma(Ω)
· ∂xf − a(Ω)m∇φ · ∂pf = 0 (18)

where the gravitational potential is sourced by the DM density

∇2
φ =

∫
d
3
p f(x, p, t) (19)

Observations (spatial distribution of galaxies) probe moments of the VP equation, such as

ρ(x, t) =

∫
d
3
p f(x, p, t)

u(x, t)ρ(x, t) =

∫
d
3
p p f(x, p, t)

Πab(x, t)ρ(x, t) =

∫
d
3
p papb f(x, p, t) (20)

We can find evolution equations for the moments (but - these equations are not closed!).

0 = ∂tρ(x, t) +∇ · (ρu)

0 = ∂tu(x, t) + u · ∇u +∇φ + ρ
−1∇ · (Tρ) (21)

(Review in Bernardeau et al. , ”Large-Scale Structure of the Universe and Cosmological Perturbation
Theory”, Physics Reports, 367, (2002), 1-248).

Regimes of interest
Linear regime,
Intermediate (neglecting tensor term in velocity), treated with perturbation theory,
Nonlinear regime - resort to N-body simulations



Comparison of Theory and Observations -
Large-Scale Structure

As discussed, the data model for the observed large-scale structure is that the observed galaxy (smoothed)
density field traces the underlying dark matter distribution, which has evolved deterministically from
Gaussian initial conditions.

For the purposes of discussion we write

d = F (s0,Ω) + n (22)

where F (s0,Ω) represents the dark matter evolution (according to the Vlasov-Poisson equation) from
initial conditions s0 and cosmological model parameters Ω.

As before with the CMB example, we have a joint density

p(d, s, s0,Ω) = p(d|s)δ[(s− F (s0, t)]p(s0|Ω)p(Ω) (23)

or a posterior

p(Ω|d) ∝ p(Ω)

∫
d(s, s0) p(d|s)δ[(s− F (s0, t)]p(s0|Ω) (24)

The new element here (compared to CMB analysis) is the nonlinear deterministic evolution! If the theory
were linear, this would not cause much of a problem as the underlying ”signal” would stay Gaussian.
However, the nonlinear nature of gravitational collapse generates not only a non-Gaussian signal, but one
which we cannot solve analytically!

Therefore two complications for inference given large-scale structure data:

Nonlinear dynamics generate non-Gaussian fields - we do not have ”sufficient statistics” (i.e.,
sufficient statistic for Gaussian fields = power spectrum) for comparison of theory and observation
We have uncertainty due to numerical error which ideally should be taken into account in the final
error bars.

We will review two paths to the likelihood for LSS analysis - the ”direct approach”, or the ”indirect”
approach where we construct approximate likelihoods from test statistics.



”Indirect Approach” - Approximate Likelihoods for
Large-Scale Structure

The construction of approximate likelihood functions, quantify the ”goodness of fit” of cosmological model
parameters to observations through agreement of various chosen ”test statistics” (such as power spectra).

Where does this come from? We go from p(d, s, s0,Ω) = p(d, s, s0|Ω)p(Ω) to p(Λ|Ω)p(Ω) at
potentially a great reduction in information where

p(Λ|Ω) =

∫
d(d, s, s0) δ[Λ− Λ(d)] p(d|s)δ[(s− F (s0, t)]p(s0|Ω) (25)

In the above note that Λ is a ”test statistic”, i.e. it is some quantity that we choose to be informative and
computationally feasible.

The idea is that we take our measurements d, compute the test statistic on those measurements, and have
a posterior p(Ω|Λ(d)).

The functional form of the above is analytically unknown, cannot be directly computed, and is (almost
always) approximated as a Gaussian with the ”inverse Fisher matrix” as the covariance matrix

F
−1

(Ω) = EΩ[(Λ− Λ(Ω))⊗ (Λ− Λ(Ω))] (26)

This quantity contains ”cosmic variance”, ”sample variance”, and ”variance” due to all other systematic
effects (quite a powerful matrix!)

In practice then we need to run a large number of Monte Carlo simlulations including N-body simulations
followed by simulated measurement, to compute the ensemble averages Λ(Ω) and the variance F (Ω) .

Given data, we can then use MCMC to explore the posterior, however we will also need some means to
interpolate between the {Λ(Ωi), F (Ωi)} computed on our discrete grid.



Are Gaussian approximations ok?
By ”Gaussian” approximation we essentially mean a second order expansion to I(Λ|Ω) ≡ − log p(Λ|Ω),
i.e.

I(Λ|Ω) ∼ I(λ(Ω)|Ω) + (∂ΛI|λ)(Λ− λ(Ω)) + (Λ− λ(Ω))F
−1

(λ)(Λ− λ(Ω)) + . . . (27)

This does not in general have to do with the dynamical linear regime (i.e. large-scales, where linear
dynamics imply a Gaussian at all times, although with time varying power spectra). Even if the underlying
signal process is Gaussian, we do not have Gaussian measures for the statistics. We seem to rely on the
central limit theorem (i.e. many modes in the observational and simulation volumes).

Note - for any value of Λ, define Λ(u) = (1− u)Λ + uλ(Ω). Then a Taylor expansion with remainder
will give, for some û(Λ,Ω) ∈ [0, 1] (and assuming that ∂ΛI|λ = 0 )

− log p(Λ|Ω) ∼ I(λ(Ω)|Ω) + (Λ− λ(Ω))F
−1

(û)(Λ− λ(Ω)) (28)

The inverse covariance matrix is then a function of Λ, i.e. not ”stationary”.

Now - we are going to reverse our attention. Fix Λ (i.e. we have collected our data and evaluated Λ(d)).
We have our original identity

− log p(Λ(d)|Ω) ∼ I(λ(Ω)|Ω) + (Λ(d)− λ(Ω))F
−1

(û(d,Ω))(Λ(d)− λ(Ω)) (29)

where we defined implicitly λ(d,Ω) = (1− û)Λ(d) + ûλ(Ω) and where û ∈ [0, 1] by the mean value
theorem.

The above suggests that global Gaussian approximations (or more localized mixtures of Gaussians) are
perhaps not that bad in ”reasonable” regions of parameter space where the data and model parameters
make very close predictions of the test statistics.

Note - the above is meant as a sketch of possible explorations of how well Gaussian approximations
perform - it is left as an ”open problem” for further exploration to more precisely quantify the convergence
in Gaussian approximations, thereby adding precision to inferences of parameters for LSS data.



Back to the Direct Approach - First Steps . . .

Can we develop sampling algorithms to directly sample p(s, s0,Ω|d), including all sources of uncertainty
(numerical, cosmic variance, measurement errors and systematics, etc.)?

Key New Idea - Uncertainty due to numerical error is included - the ”δ[s− F (s0, d)]” replaced by

e−β‖R(s)‖2 where we have defined the residual error

R(s) ≡ s− F (30)

Simple example - for a linear ODE ẏ = My, we would have for data d = Hy + n (i.e. sampled and
observed with some linear function H)

p(M, y(t), y0|d) ∝ e
−(d−Hy)N−1(d−Hy)

e
−β‖ẏ−My‖2

p(y0)p(M) (31)

where β > 0 is ”tuned” so that samples from our signal prior have the same average residual error as a
deterministically computed numerical estimate. We could easily solve for the posterior in this case due to
the linear dynamics . . .

Our LSS posterior then becomes

p(Ω|d) ∝ p(Ω)

∫
d(s, s0) e

−(d−s)N−1(d−s)
e
−β‖R(s)‖2

p(s0|Ω) (32)

Work in Progress How to sample? Or at least, how to estimate the parameters and error bars?

What is the computational expense of sampling here as opposed to the massive suite of Monte Carlo
simulations required for the computation of the ”test statistics” in the ”indirect” approximate
likelihood approach? What is the optimal trade-off of computational expense vs. information gain??



Summary

Current and future ground and space-based missions are designed to not only detect, but map out with
increasing precision, details of the universe in its infancy to the present-day.

Data analysis in cosmology involves challenging problems of Bayesian inference in the context of spatial
random fields, source separation, and data assimilation for non-linear dynamics observed with
measurements from different instruments with their own resolution and measurement error.

Computational advances for inference in cosmology can be synergistic with progress in other fields:

Data fusion from multiple sources at multiple resolutions
Data assimilation and uncertainty quantification in : computational fluid dynamics, climate
science, weather prediction - all involving inference in the context of nonlinear dynamics observed
with measurement error.

Two paths to the likelihood - the ”direct” and ”indirect” methods

Example of a ”direct” approach - Gibbs sampling and MCMC for Bayesian analysis of the Cosmic
Microwave Background (more generally, Gaussian spatial processes)
Open challenge - quantify accuracy vs. computational expense for ”indirect” likelihood
approximation for Large-Scale structure analysis, and investigate potential advances allowing a
”direct approach”.

Ultimate goal is continued progress in computational implementations of a Bayesian approach to
quantify uncertainty including measurement and computational error given large amounts of data
returned from a diverse range of measurements.

This work was partially performed at the Jet Propulsion Laboratory, California Institute of Technology , under
contract with the National Aeronautics and Space Adminstration. Government sponsorship acknowledged.
Copyright, 2015, all rights reserved.
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