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Introduction

Current and future ground and space-based missions are designed to not only detect, but map out with
increasing precision, details of the universe in its infancy to the present-day.

Each of these instruments return observations with their own unique insight into the universe we want to
understand, as well as their own peculiar response to the signal they are designed to detect.

As a result, we are faced with the increasingly important challenge of analyzing and interpreting
observations from a wide variety of instruments to form a coherent view of the universe.

How can we make inferences about our universe from observations returned from a diverse collection of
instruments spanning a wide range of frequencies and spatial scales?

Data analysis in cosmology involves challenging problems of Bayesian inference in the context of spatial
random fields - including inference for Gaussian spatial random fields, source separation, and data
assimilation and parameter estimation for non-linear dynamics.

For this talk - brief overview of cosmology as it leads to inference problems that have applications in other
fields. (examples - data fusion from multiple sources at multiple resolutions, data assimilation in climate
science or weather prediction, etc.)
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Quantum (Gaussian) fluctuations generate small
amplitude initial density perturbations.

These density perturbations evolve linearly while the
universe is in a hot, dense, ionized state (a balance
between photon radiation pressure and gravity for small
amplitude density variations).

The universe expands and cools eventually allowing
neutral matter to form, and allowing photons to travel
long distances without scattering. We observe photons
from this epoch in all directions at microwave frequencies
- the brightness temperature of the photons show small
variations which trace out the initial density
perturbations at the time of last scattering.

The initial (Gaussian) density fluctuations after
last-scattering undergo non-linear gravitational collapse
(approximately the fluid equations coupled to gravity).

We observe the resulting 3-dimensional distribution of
matter with surveys at visible and other wavelengths.

Because of the finite speed of light and the expansion of the
universe, we are able to observe the history of the universe by a
Jjoint analysis of measurements at different wavelengths.



Bayesian Inference in Cosmology

We have a very detailed, physically motivated, theoretical framework in cosmology - parametric details of
which we want to learn from measurements.

We have one universe to observe, so we want to formulate a Bayesian approach which respects the
underlying physics and details of the theory as closely as possible!

A very diverse range of inference problems are encountered when confronting theory and measurement in
cosmology - a Bayes' posterior in this situation is derived in detail from a specification of the simulation of
measurement in the context of the theoretical framework.

While conceptually straightforward, this quickly leads to computational problems

Two challenges encountered in Bayesian inference for cosmology:
B Analytically known posterior functional form, yet computationally intractable to evaluate for large
datasets
B Marginal Posterior unknown - and joint sampling for dynamical parameters and state history is
extremely challenging due to high-dimensionality and non-Gaussian structure

We will review these problems and potential solutions along with an indication of breakthroughs needed



Inference Problem 1 - Analysis of the Cosmic
Microwave Background
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Inference Problem 2 - Analysis of Large-Scale
Structure

(Credit: The Large-Scale Structure of the Universe, Springel, V.; et al; , Nature, Vol. 440, p. 1137, April 2006)
m Left Figure: Slices at different times from an N-body simulation of the dark matter distribution evolving
according to gravitational collapse in an expanding universe as determined by a cosmological model.

B Right Figure: A semi-analytic model prediction of how luminous galaxies trace this dark matter
distribution. The history of the distribution is displayed by the slice outputs at sequentially later times.

m  The challenge is to relate the observed redshift survey data to the underlying dark matter distribution as
shown on the left, as well as determine the cosmological parameters governing the evolution.



Simulation and Inference

Important first step - write down a " joint density” of all degrees of freedom in the physical model, even if
they are not observable!

We have the joint density given in a "forward” manner determined by specifying how to simulate
observations for any parameter in our class of models and the data D)

Model Parameters Q

"True” field, signal, etc. X Q)
Data D

Joint Density p(D, X,Q) = p(D|X)p(X|Q)p(Q2)

Simulation and Inference involve different conditional densities inherited from the common joint density on
"everything” !

Simulation conditions on the model -
p(D, X|Q) = p(D|X)p(X|Q) @
Inference conditions on the data

o x1D) - P(DIX)p(X|2)p(2)
P XIP) = T X7 (DX ) p(X 9 p() ®




Bayesian Inference for the CMB

Simplest data model - the observed sky at k = 1 : K frequencies is
dp = Bps+nyg 4)

( with instrument response function ("beam”) By, underlying true sky s, and instrumental noise n with
covariance Ny,).

Factors in the joint density (i.e. p(d, s, Q) = p(d|s)p(s|Q?)p(2)) for CMB analysis:

—2logp(d|s) o« (d— Bs)Nﬁl(d — Bs)
—2logp(s|Q) = sCTH(Q)s + logdet |C(Q)] (5)

Given measurements we have information about details of the cosmological theory and the underlying true
sky,

p(d, s, Q) e—(d=Bs)N~1(d—Bs)—sCcT1(Q)s—log|C(0)|
p(2, s|d) = T o T (6)
JdQ’,s") p(d, s', Q) Z(D)

Bayes' marginal posterior in cosmological (theory) parameters [ ds p(£2, s|d) is:
—2log p(Qd) ~ D[N + C(Q)] ' D + log |N + C(Q)| ™

Today's CMB experiments return maps of the sky with N o > 10 - It is already intractable to directly

pixe

evaluate the posterior for any §2 due to the O(Na

pixe/) expense of computing the determinant.



Markov Chain Monte Carlo Sampling

m Instead of direct likelihood evaluation for cosmological parameters, we explore Markov chain algorithms
Jjointly sampling estimates of the CMB map and parameters

m  General MCMC - We can make proposals for both new parameters and CMB maps, followed by an accept
or reject step

m  Gibbs sampling - ( a special case of a Markov chain with accept probability unity) proceeds by interatively
sampling from the conditionals

snt1 < p(s|C(Q2n), D)
Qpt1 «— p(Qsp41) (8)

(where note conditional independence of the data, p(Q2|s, d) = p(Q2|s)).

= For Gaussian fields, we found that Gibbs sampling works well in the high signal to noise regime (large
spatial scales), while it was necessary to develop a special MCMC method for low signal-to-noise (small
spatial scales).

m  This will be a common problem when using Gaussian priors for spatial random fields when we have data
with different measurement error on different spatial scales!



Gibbs Sampling - The map making step ...

m  The conditional p(s|€2, D) is Gaussian -
—2log p(s|Q2, D) ~ (Z(dk — Bps)Ny, M (dy — Bw)) —sCTH(9)s ©
k

= Exact samples for any signal measurement covariance matrix generated by solving the linear problem(s)

(c‘1+ZB,€TN,;13k>s = (ZBkTN,;ldk)
k k

(c—l + ZB,{N,:IBk> ¢
k

V200 + (Z B,ka‘l/%k> (10)
k

(where {wq, wy.k } are all independent white noise maps).

m Our exact sample is s + £, since we can show

-1
Cov(€) = (c‘l + ZBkTN,;lBk) (11)
k



Gibbs Sampling - The parameter update step
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m  The parameter conditional is independent of the data p(2|s, d) = p(€2|s) and has the form

—logp(Q|s) ~ (Z(l +1/2) (C (Q)> + log \Cz(ﬂ)\> (12)

(with o an empirical power spectrum estimate for inferred signal CMB map s).

m  This generalizes to polarization (more generally multi-variate quantities at each pixel) with the inverse

Wishart distribution.




Computational Challenges for Constrained Gaussian
Realizations

m While we have an analytic solution for exact Gaussian samples, solving the associated linear equations are
typically NOT easy for large data sets with missing data (in the CMB analysis context we cannot see
through the galaxy). This will be a very common problem when combining measurements from different
experiments with different spatial coverage.

m  The spatial noise N is not uniform due to the scan strategy of the instrument (however, usually close to a
diagonal matrix in the pixel basis).

= The signal matrix C' here is diagonal in the spherical harmonic basis (a rotationally invariant random field).
In other contexts we often want to model a spatial process with eigenmodes that capture spatial
correlations that are physically distinct from the spatial properties of measurement error.

m These complications lead to major computational challenges for solving the linear problem (with arbitrary
right hand side X')

I+3 ct2EIN Bott/? |y = ofl/2x (13)
k

m Solving these types of problems for large spatial datasets, especially with missing data, requires
preconditioning for iterative linear solvers to work efficiently.



Multi-Grid Approach to Constrained Realizations
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The Constrained Realization system is symmetric and
positive definite, which suggests the use of the CG
algorithm. For the behavior of CG and other Krylov
methods, we are primarily interested in the eigen-spectrum
after preconditioning

Figure on left: Eigen-decomposition of the CR system using
a diagonal preconditioner. Top panel: the eigenvalues for a
(smoothed) 143 GHz Planck channel with a mask covering
40% of the sky. Bottom panel: a selection of eigenvectors
corresponding to very low eigenvalues. The structure of the
mask (bottom) is clearly visible in the eigenvectors.
Problematic feature is the exponential drop in the
eigenvalues (theoretical results indicate that the CG search
needs at least one iteration per eigenvalue located in
exponentially increasing parts of the eigenspectrum,)
Exponential spectral feature is due to large-scale modes in
the "missing data” regions!

For this problem, the power spectrum of the signal process
is roughly (spatial scale)’zA This suggests the inverse
covariance matrix is something like V2. This motivated an
exploration of a multi-grid approach known to be useful in
numerical solutions of elliptic PDE's.

(For details see: D. S. Seljebotn et al, Astrophysical Journal Supplement Series, 210:24 (13pp), 2014 February)



Problems with Slow Mixing of Gibbs Sampling at
Small Spatial Scales

m  The problem - infer the signal and covariance matrix of a spatial Gaussian process of physical interest
observed with different experiments with different resolution and spatial coverage - measurement error
therefore varies with scale.

m It is common for global coverage to be at relatively low spatial resolution, while high resolution might only
be probed with experiments with smaller regions.

m The end result - it is common for measurement error (and uncertainty) to greatly increase at the smallest
spatial scales.

m  This presents a problem when jointly inferring physical covariance matrices and the signal with Gibbs
sampling! The conditional p(C|s, d) = p(C|s) is typically very concentrated about the estimator for
current sample s, and much more concentrated than the total confidence interval of the posterior for the
eigenvalues (associated with "small spatial scale modes”) of the covariance matrix!

®  We somehow need to find an MCMC algorithm which can make large jumps in the covariance matrix in the
subspace characterizing small spatial scales - and yet to have a reasonable acceptance probability we need
to adjust the signal map as well.

m  Propose independent of current state - optimal for mixing length but made difficult by the appearance of
intractable determinant ratios in the accept probability, i.e. propose with some approximate 5(2|D)
followed by exact map update p(s|€2, D) gives

o [(p(nz,szm)> (q(slnl,D)ﬁ(nuD)>< IN + C(Q2)] )}
A = min (14)
p(Q1,51]D) IN 4+ C()] a(s|Q2, D)p(Q2|D)




Specialized MCMC for Faster Mixing at Small
Spatial Scales

m  Goal - make large changes in the covariance matrix to quickly mix in MCMC.

m Consider proposals of the form:
p(Q2, 52|21, 51) = 6 [s2 — F(s1,02,21)] p(Q2]d) (15)
(p any approximate marginal posterior) where we make a deterministic change in the map variables

according to some function F(s1,Q2,821).

m  Example - consider a move of the form which leaves sCil(Qg)s invariant,

sy = C+1/2(Qz)071/2(ﬂ1)51 (16)

m  The condition of detailed balance including deterministic moves requires the consideration of some
technical points (requires including the determinant of the Jacobian of the functional mapping in the
derivation of the accept probability).

m  For this proposal we have the accept probability

A = min |1,

—(d—Bsg)N~L(d—Bsy) 5001 1D
e (p( 1l )> )

e—(d—Bs1)N—1(d—Bsy) #(Q2|D)

(For technical details - Jewell et al, The Astrophysical Journal, 697:258268, 2009 May 20)

m  We can therefore make large moves in MCMC with the covariance matrix where the measurement error
is large (small spatial scales).



Dark matter 2=855 | Galaxids : 22855
allence 0 nre N
T=06Gyr ) TE£06 Gyr
gure cred e Large-Scale e of the erse
z2=572 - e ¥ 72572 D ce et a a e ol. 440 p Ap
al de pe o aced b e
2 e gravitational collapse a backgro
“ % o expanding erse to fo e e o
% % "
eb
data co ed of the position and red of galaxie
5 3 e da a e alo
T=10Gyr 7 £
; arly on, and at large spatial scale earized
22139 S TR i appro. atio o e
Bo ent and e experiments are p g spatia
ales of the erse where the dyna are nonlinea
e ‘ A e e e
4 § ¥ alth o ormation to act b a atically a
omputationa allenging due to the nonlinea 0
4 d a
A e B a a ana a computationa easib
3 T=47 Gy 543 47 6y¢ plementation of an exact Bayesian approa o the
erence of cosmo al paramete 0 ese
Y £20) ¥ 2=k
: % easureme as not yet bee developed
i 5 X !
} 5 0 approache dire a e B, jo
ik ¢ % erring the state ory and paramete and dire
» 'y L\ B N X appro ate likelihood e o e
, £ a are used. Both approaches have to dea
, ge computational expense
150 héLMipE e 13.6Gyr




Large Scale Structure - Theory

Standard framework : we see luminous matter (galaxies) clustered within dark matter halos, which have
formed through gravitational collapse in a background uniformly expanding universe.
Dark matter phase-space distribution evolves according to the Vlasov-Poisson equation (in expanding

coordinates)
B¢ (@,p, 1) + —— - B0 f — a(Q)MV - 0, f =0 (18)
ma(€2)

where the gravitational potential is sourced by the DM density

Vi = /dsp f(z,p,t) (19)
Observations (spatial distribution of galaxies) probe moments of the VP equation, such as
plz,t) = / a®p f(z,p,t)
we e ) = [dpp e
May(e,0p(e,t) = [ @ papy 1(@.p.0) (20)

We can find evolution equations for the moments (but - these equations are not closed!).

0 = O¢p(z,t)+ V- (pu)
0 = du(m,t)+u-Vu+Veé+p V- (Tp) (21)
(Review in Bernardeau et al. , " Large-Scale Structure of the Universe and Cosmological Perturbation

Theory”, Physics Reports, 367, (2002), 1-248).

Regimes of interest
B Linear regime,
B Intermediate (neglecting tensor term in velocity), treated with perturbation theory,
B Nonlinear regime - resort to N-body simulations



Comparison of Theory and Observations -
Large-Scale Structure

As discussed, the data model for the observed large-scale structure is that the observed galaxy (smoothed)
density field traces the underlying dark matter distribution, which has evolved deterministically from
Gaussian initial conditions.

For the purposes of discussion we write
d=F(s0,9) +n 22)

where F'(sq, () represents the dark matter evolution (according to the Vlasov-Poisson equation) from
initial conditions sg and cosmological model parameters 2.

As before with the CMB example, we have a joint density
p(d; s, 50, 2) = p(d[s)d[(s — F(s0, t)]p(s0|2)p(2) (23)

or a posterior .
p(Q]d) o P(Q)/ d(s, s0) p(d|s)8[(s — F(so, t)]p(s0[€2) (24)

The new element here (compared to CMB analysis) is the nonlinear deterministic evolution! If the theory
were linear, this would not cause much of a problem as the underlying "signal” would stay Gaussian.
However, the nonlinear nature of gravitational collapse generates not only a non-Gaussian signal, but one
which we cannot solve analytically!

Therefore two complications for inference given large-scale structure data:
B Nonlinear dynamics generate non-Gaussian fields - we do not have "sufficient statistics” (i.e.,
sufficient statistic for Gaussian fields = power spectrum) for comparison of theory and observation
B We have uncertainty due to numerical error which ideally should be taken into account in the final
error bars.
We will review two paths to the likelihood for LSS analysis - the "direct approach”, or the "indirect”
approach where we construct approximate likelihoods from test statistics.



" Indirect Approach” - Approximate Likelihoods for
Large-Scale Structure

m  The construction of approximate likelihood functions, quantify the " goodness of fit" of cosmological model
parameters to observations through agreement of various chosen "test statistics” (such as power spectra).

m Where does this come from? We go from p(d, s, sg, 2) = p(d, s, s0|Q2)p(2) to p(A|Q)p(Q2) at
potentially a great reduction in information where

p(A|Q) = /d(d, s,50) 8[A — A(d)] p(d]s)d[(s — F(so0,t)]p(s0|) (25)

In the above note that A is a "test statistic”, i.e. it is some quantity that we choose to be informative and
computationally feasible.

m  The idea is that we take our measurements d, compute the test statistic on those measurements, and have
a posterior p(2|A(d)).

m  The functional form of the above is analytically unknown, cannot be directly computed, and is (almost
always) approximated as a Gaussian with the "inverse Fisher matrix” as the covariance matrix

FTHQ) = Bol(A — A(2) ® (A — A(2))] (26)

This quantity contains " cosmic variance”, "sample variance”, and "variance” due to all other systematic
effects (quite a powerful matrix!)

m In practice then we need to run a large number of Monte Carlo simlulations including N-body simulations
followed by simulated measurement, to compute the ensemble averages A(2) and the variance F(S2) .

m Given data, we can then use MCMC to explore the posterior, however we will also need some means to
interpolate between the {A(£2;), F/(€2;)} computed on our discrete grid.



Are Gaussian approximations ok?

By " Gaussian” approximation we essentially mean a second order expansion to I(A|Q2) = — log p(A|Q2),
ie.

I(AIQ) ~ T(MQ)19) + (BATIA(A = M) + (A = AQDFTO)A = A@) + ... (27)

This does not in general have to do with the dynamical linear regime (i.e. large-scales, where linear
dynamics imply a Gaussian at all times, although with time varying power spectra). Even if the underlying
signal process is Gaussian, we do not have Gaussian measures for the statistics. We seem to rely on the
central limit theorem (i.e. many modes in the observational and simulation volumes).

Note - for any value of A, define A(u) = (1 — u)A + uA(£2). Then a Taylor expansion with remainder
will give, for some (A, ©2) € [0, 1] (and assuming that Oy I|y = 0)

—log p(AIQ) ~ T(A(2)[2) + (A = A(@)F 1 (@) (A = A(2)) (28)

The inverse covariance matrix is then a function of A, i.e. not "stationary”.

Now - we are going to reverse our attention. Fix A (i.e. we have collected our data and evaluated A(d)).
We have our original identity

—log p(A(D)[2) ~ T(AD)IR) + (A(d) = AF~H(a(d, )(A) = A(Q)  (29)

where we defined implicitly A(d, 2) = (1 — @)A(d) + aA(£2) and where @ € [0, 1] by the mean value
theorem.

The above suggests that global Gaussian approximations (or more localized mixtures of Gaussians) are
perhaps not that bad in "reasonable” regions of parameter space where the data and model parameters
make very close predictions of the test statistics.

Note - the above is meant as a sketch of possible explorations of how well Gaussian approximations
perform - it is left as an "open problem” for further exploration to more precisely quantify the convergence
in Gaussian approximations, thereby adding precision to inferences of parameters for LSS data.



Back to the Direct Approach - First Steps ...

= Can we develop sampling algorithms to directly sample p(s, sg, £2|d), including all sources of uncertainty
(numerical, cosmic variance, measurement errors and systematics, etc.)?

= Key New Idea - Uncertainty due to numerical error is included - the " §[s — F'(sg, d)]" replaced by

2
e BIIR(S)I% where we have defined the residual error
R(s)=s—F (30)

= Simple example - for a linear ODE y = My, we would have for data d = Hy + n (i.e. sampled and
observed with some linear function H)

P(M, y(t), yold) o e~ @ HVNTHA=HY) =BlI=Myl® 3 (ar) (31)

where B > 0 is "tuned” so that samples from our signal prior have the same average residual error as a
deterministically computed numerical estimate. We could easily solve for the posterior in this case due to
the linear dynamics . ..

m  Our LSS posterior then becomes
-1 2
P(@d) x p(2) [ d(s,s0) e TTINTHEZDZPIREIT, (54 ) (32)

m  Work in Progress How to sample? Or at least, how to estimate the parameters and error bars?

m  What is the computational expense of pling here as opposed to the ive suite of Monte Carlo
simulations required for the computation of the "test statistics” in the "indirect” approximate
likelihood approach? What is the optimal trade-off of computational expense vs. information gain??



Summary

m Current and future ground and space-based missions are designed to not only detect, but map out with
increasing precision, details of the universe in its infancy to the present-day.

= Data analysis in cosmology involves challenging problems of Bayesian inference in the context of spatial
random fields, source separation, and data assimilation for non-linear dynamics observed with
measurements from different instruments with their own resolution and measurement error.

m  Computational advances for inference in cosmology can be synergistic with progress in other fields:

B Data fusion from multiple sources at multiple resolutions

B Data assimilation and uncertainty quantification in : computational fluid dynamics, climate
science, weather prediction - all involving inference in the context of nonlinear dynamics observed
with measurement error.

m  Two paths to the likelihood - the "direct” and "indirect” methods

B Example of a "direct” approach - Gibbs sampling and MCMC for Bayesian analysis of the Cosmic
Microwave Background (more generally, Gaussian spatial processes)

B Open challenge - quantify accuracy vs. computational expense for "indirect” likelihood
approximation for Large-Scale structure analysis, and investigate potential advances allowing a
" direct approach”.

= Ultimate goal is continued progress in computational i ations of a Bayesian approach to
quantify uncertainty including measurement and computational error given large amounts of data
returned from a diverse range of measurements.
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contract with the National Aeronautics and Space Adminstration. Government sponsorship acknowledged.
Copyright, 2015, all rights reserved.



	Introduction

