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Intuition: Toy Example

Chance constraint: Risk < 1%

Path A: cost = 20,
risk =0.5%

Path B: Cost = 10, Risk =1.5%

Q,

Optimal mixed strategy
Path A: 50%, Path B: 50%
Expected cost = 15, risk = 1%
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Problem Formulation (Pure SOC)

PSOC (Pure-strategy Stochastic Optimal Control

¢ = min E[fo(z,u)]
peM

g(z,p,w)=0

st. Elfi(x,pn)| <V, i=1---K.



Problem Formulation (Mixed SOC)

MSOCY (Mixed-strategy Stochastic Optimal Control)

N+1
*N __ - ' 7
G = w3 PR
SN p’=1, p?>0
g(z,p,w)=0

J=1

N+1

s.t. Z PE [fz(aj,,uj)] <V
=1

i=1---K

Question 1: What N is sufficient in order to achieve
optimality?




What N is sufficientin order to achieve optimality?

* |f there are K stochastic constraints, N=K (having
K+1 options) is sufficient for optimality (called K-
randomization)

— Existing result for finite-state constrained MDP but
not for continuous state/action space
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Alternative Representation of the Problems

Let ¢ = (cg, 1, --cg) Where ¢; is the i-th cost value:
ci = E[fi(z,p)].

We denote by F C RE*! the feasible set of the costs of
the original problem, that is,

F:={c|pe MAg(x,p,w)=0}. (6)

PSOC’:

cp =min ¢
cEF

st. <V, i=1---K.
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Alternative Representation of the Problems

MSOCHN’;
N+1
min E p’cl
Cl...c‘z'\]_*_lef'. _1
Zj:-{il pJ:]-) pJ 20 7=
N+1
st. Yy pld <V
j=1
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Theorem 1: Intuition

2 constraints => 3D cost-risk space => need 3 pointsto cover the convex hull

Expected Cost
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Question 2: How much we can gain by mixed strategy?
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Theorem 2

* Where A is the duality gap of PSOC
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&% Min Common/Max Crossing (MCMC) Framework

* — . <
Min common point = primal p r;161)r(1f(x) st. glx) =c
optimal solution: the point q" = r{@g”}{lel}(lf(x)+/1(9(x) —C)
with the least f among F N L f
A

Max crossing point = dual

optimal solution: the point \ (/’1*4’1) Min common point
\
with the greatest f among the AN

intersection of L and \
hyperplanes that contain F in
their upper closed halfspace

RN

A /\"\
F = {(f’ g)|x = X} Max crossing point \\
L=1f,.9lg=c} o




Remark3

Mixed-strategy CSOC
problem does not have a
duality gap

Remark4

The optimal mixed
control strategy can
consist of up to two pure
control strategies

Strong Duality of Mixed Strategy CSOC

Expected Cost C

/ Dual optimal solution of pure strategy CSOC

= Dual optimal solution of mixed strategy CSOC
A%,1

\\(/4 ) Optimal solution of pure strategy CSOC

Duality gap
[y A \_




Solution Approach

* A naive approach (for N-randomization): co-
optimize u! ---u¥*1 and pt --- pNVH1!
— Difficult to solve, if not impossible...
N+1
*N : 7 . 0]
o = min PE | folx,u?)
ulr---u"?_\'r'H EH_T Zl [ ]
Z:?Zl p’=1, p’ >0 1=
g(z,u,w)=0
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' Theorem 3: Condition for Optimality

* Necessary and Sufficient Condition

a) € C(\) V pt =0, Vi=

K+1 o N\
A (Z pcl.x — V) =0,

=1

d)p'>0Vi=1---K +1,
K+1

e) ZpCIK<Vana'
=1

flcceF, Vi=1---K +1.

1--- K +1

> KKT conditions

J
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Solution Approach

1. Solve the dual of the original (non-randomized)
problem

Because the dual of the original and mixed problems are
the same!

2. If A" = 0 (stochastic constraints are inactive)

The optimal solution to the original problem s also
optimal for the mixed problem

3. fA*>0

Get the primal solutionsu --- Uk 41 that minimizes the
Lagrangian with A”

Get pl ---pV ! that makes the equality in the stochastic

constraints hold:
N+1

PE|[f; (:}::u.j) =V N+1 ,
; | } and z pl =1

i=1---K j=1 17



Computing probability distribution

Get p! --- pV*1 that makes the equality in the stochastic constraints hold

Expected Cost C




Special Case: K=1

* |f thereis only one stochastic constraint, the
dual optimization can be solved efficiently by
root finding

— E.g., Joint chance-constrained optimal control

19



Special case with K=1

Dual Problem

Max Imin E[fo(x,w)] + A(E[fi(x, w)] = V)
|

q(A)

Primal Problem

min E|fo (x, u)]
st. E[fi(x,u)] <V



Special case with K=1

Dual Problem

Max Imin E[fo(x,w)] + A(E[fi(x, w)] = V)
|

q(A)

* g(A) is always concave

* Optimality condition: 0 € dq(A)
— dq(A): subgradient

* Therefore, dual optimization is reduce to a zero-
finding problem over dq(A)
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dq(A) 4

:TA—V

Dual Solution through Root Finding

Risk
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Dual Solution through Root Finding

dq(A) 4
=T, — V

o ——
| : A3
¥ vV T2y, Riskr
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Dual Solution through Root Finding

dq(A) 4
=T, — V




Cost c

Dual Solution through Root Finding

aq(/l) A
=T, — V




Cost c

N F

_______________________________

dq(A) 4

:T'A—V

Dual Solution through Root Finding

Optimal mixed strategy

I*
r,

Risk r

26



Implementation

* Can be used with any chance-constrained
optimal control problem

* Implemented on chance-constrained dynamic
programming™® and MPC**

*Ono, Kuwata, Baralam, “Joint chance-constrained dynamic programming,” CDC-12
**0no, “Control by Coin Flips: Mixed Strategy for Stochastic MPC,” Submitted to ACC-16 27
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Problem:
* Minimize path length
* Risk < 2%

Xi+1 = X + Uy, ~+ Wi,
e 100x100 discrete state space

I@N Control Expected
“BE N strategy path length

Pure 130.8 0.64%
Mixed 104.2 2.0%

/0 80 90

Risk: 2.28% 2



Piecewise Linear Approximation of SMPC
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min ZZ'vki—i—)\ szik—v

k=1 1=1 i=1 k=1
S.t. Vkd = Upd, Vkd = —Ukd, Pur =X g

Tp+1 = ATk + Bur + wi

h"ifk — G )
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Mixed strategy (/1U)

97 Risk: 0.21% s
Chosen by 69. 4%
8 -
Pure strategy = /o
Risk: 1.00% Y Mixed strategy (4,)
. Risk: 2.78%
G- Chosen by 30.6%
4 —
2 -



Mars Landing Scenario

Problem:
. * Minimizedrivingdistanceto
o visit two science targets after
R landing
-3.386 * Risk<0.1%
-3.388
f .3.39§ * 2000x2000 discrete state space
2 * Used terrain data at E. Margaritifer
-3.392
on Mars
-3.394
3396
Control Expected
-3.338 % strategy cost
34508 S— 1 |
-3.7 -3.695 -3.69 -3.685 ’ Pure 645.49 0.016%
mmm-cemrmmmmmgm ™) x10

Mixed 644.81 0.1%
p



Mixed strategy cost
L =
By Ry

— .
M [ M

—

i =N

(N

3 4
FPure strategy cost

200 CCMPC problems
*  with random obstacle
locations

* Mix solutions
outperformsin red
dots

* No pure solutions
outperforms the
mixed ones
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A Paradox

* Before the coin flip,

risk is 1% Path A: 50%, Path B: 50%

. Expected cost = 15, risk = 1%
e But after seeing the XPECIEE £05 o= 2%

result of the coin flip,
the risk is NOT 1% any

more!

* |f you know that Path
B is chosen, the
chance constraint is
violated!

Path A: cost = 20,
risk = 0.5%

Path B: Cost = 10,
Risk = 1.5%
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Solution to the Paradox

* Don’t let the operator

know the result of the  path A: 50%, Path B: 50%
coin f|ip Expected cost = 15, risk = 1%

— Then the probability ~ Path A:cost =20,
of failure stays at 1% "'k =0.5%

* Like Schrodinger's cat,
the vehicle’s stateis a
superimposition of
Path A and Path B

Path B: Cost = 10,
Risk = 1.5%

34



Multi-agent Interpretation

e |fthereare 100

homogeneous agents  Path A: 50%, Path B: 50%

—_ 1 — 10
_ Minimize total cost Expected cost =15, risk = 1%

while ensuring that 99 Path A: cost = 20,
of them are expected  risk =0.5%
to be safe

* Optimal strategy:
send 50 to Path A,
send 50 to Path B.

35



Conclusions

In @ nonconvex constrained stochastic optimal control
problem, randomizing control may result in a reduced
expected cost

If there are K stochastic constraints, K-randomizationis
sufficient

Developed a solution approach to the mixed strategy
control through dual optimization

Developed an efficient solution approach to a problem
with K=1 using root finding

Funded by the ONR Science of Autonomy Program
— Office of Naval Research Grant NO0O0O14-15-1P-00052
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