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Intuition:	Toy	Example
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Path	B:	Cost	=	10,	Risk	=	1.5%

Path	A:	cost	=	20,	
risk	=	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	risk	=	1%

Chance	constraint:	Risk	≤ 1%



Intuition
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Problem	Formulation	(Pure	SOC)
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Problem	Formulation	(Mixed	SOC)
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Question	1:	What	N	is	sufficient	in	order	to	achieve	
optimality?



Theorem	1:	Sufficient	Degree	of	Ranzomization

• If	there	are	K stochastic	constraints,	N=K (having	
K+1	options)	is	sufficient	for	optimality	(called	K-
randomization)
– Existing	result	for	finite-state	constrained	MDP	but	
not	for	continuous	state/action	space
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What	N	is	sufficient	in	order	to	achieve	optimality?



Alternative	Representation	of	the	Problems
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Alternative	Representation	of	the	Problems
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Graphical	Interpretation
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Theorem	1:	Intuition
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Question	2:	How	much	we	can	gain	by	mixed	strategy?



Theorem	2

• Where	Δ is	the	duality	gap	of	PSOC
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Min	Common/Max	Crossing	(MCMC)	Framework
Bertsekas 2009
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Max	crossing	point

𝑢#

𝑢3

𝑉

Duality gap

𝑝⋆ = min
:∈<

𝑓 𝑥 			s.t. 		𝑔 𝑥 ≤ 𝑐
𝑞⋆ = max

CD2
min
:∈<

𝑓 𝑥 +𝜆(𝑔 𝑥 − 𝑐)
• Min	common	point	=	primal	

optimal	solution:	the	point	
with	the	least	𝑓 among	ℱ ∩ 𝐿

• Max	crossing	point	=	dual	
optimal	solution:	the	point	
with	the	greatest	𝑓 among	the	
intersection	of	𝐿 and	
hyperplanes	that	contain	ℱ in	
their	upper	closed	halfspace ℱ

ℱ = 𝑓, 𝑔 𝑥 ∈ 𝑋}
𝐿 = 𝑓, 𝑔 𝑔 = 𝑐}

𝑓
Min	common	point

𝐿

(𝜆⋆,1)

𝑝⋆

𝑞⋆



Strong	Duality	of	Mixed	Strategy	CSOC
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Duality gap

= Dual optimal solution of mixed strategy CSOCRemark	3

Mixed-strategy	CSOC	
problem	does	not	have	a	
duality	gap

Remark	4

The	optimal	mixed	
control	strategy	can	
consist	of	up	to	two	pure	
control	strategies



Solution	Approach

• A	naïve	approach	(for	N-randomization):	co-
optimize	𝑢# ⋯𝑢PQ# and	𝑝# ⋯𝑝PQ#
– Difficult	to	solve,	if	not	impossible…
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Theorem	3:	Condition	for	Optimality

• Necessary	and	Sufficient	Condition
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KKT	conditions



Solution	Approach
1. Solve		the	dual	of	the	original (non-randomized)	

problem
– Because	the	dual	of	the	original	and	mixed	problems	are	

the	same!
2. If	𝜆∗ = 0 (stochastic	constraints	are	inactive)

– The	optimal	solution	to	the	original	problem	is	also	
optimal	for	the	mixed	problem

3. If	𝜆∗ > 0
– Get	the	primal	solutions	𝑢#⋯𝑢(Q# that	minimizes	the	

Lagrangian with	𝜆∗

– Get	𝑝# ⋯𝑝PQ# that	makes	the	equality	in	the	stochastic	
constraints	hold:
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Computing	probability	distribution

Risk  𝑟

Ex
pe

ct
ed

 C
os

t  
𝑐

(𝜆⋆,1)

𝑢#

𝑢3

𝑉𝑟# 𝑟3

𝑝3 ∶ 	𝑝#

Get	𝑝# ⋯ 𝑝PQ# that	makes	the	equality	in	the	stochastic	constraints	hold



Special	Case:	K=1

• If	there	is	only	one	stochastic	constraint,	the	
dual	optimization	can	be	solved	efficiently	by	
root	finding
– E.g.,	Joint	chance-constrained	optimal	control
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Special	case	with	K=1

Dual	Problem

max
C
min
X∈𝒰

𝔼[𝑓2 𝑥, 𝑢 ] + 𝜆(𝔼[𝑓# 𝑥, 𝑢 ] − V)

Primal	Problem

min
X∈𝒰

𝔼[𝑓2 𝑥, 𝑢 ]
s.t.		𝔼 𝑓# 𝑥, 𝑢 ≤ 𝑉

𝑞(𝜆)



Dual	Problem

max
C
min
X∈𝒰

𝔼[𝑓2 𝑥, 𝑢 ] + 𝜆(𝔼[𝑓# 𝑥, 𝑢 ] − V)

Special	case	with	K=1

𝑞(𝜆)
• 𝑞 𝜆 is	always	concave
• Optimality	condition:	0 ∈ 𝜕𝑞(𝜆)

– 𝜕𝑞(𝜆):	subgradient
• Therefore,	dual	optimization	is	reduce	to	a	zero-
finding	problem	over	𝜕𝑞(𝜆)



Dual	Solution	through	Root	Finding
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Dual	Solution	through	Root	Finding
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Dual	Solution	through	Root	Finding

24

𝜆a3

𝜆b3

V Risk	𝑟

Co
st
	𝑐

𝑟C_c

ℱ

𝑟C_c

𝜆𝜆b3
𝜆a3

𝜕𝑞 𝜆
= 𝑟C − V



Dual	Solution	through	Root	Finding
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Dual	Solution	through	Root	Finding
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Implementation

• Can	be	used	with	any	chance-constrained	
optimal	control	problem

• Implemented	on	chance-constrained	dynamic	
programming*	and	MPC**
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*Ono,	Kuwata,	Baralam,	“Joint	chance-constrained	dynamic	programming,”	CDC-12
**Ono,	“Control	by	Coin	Flips:	Mixed	Strategy	for	Stochastic	MPC,”	Submitted	to	ACC-16



Application	to	Path	Planning
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Problem:	
• Minimize	path	length
• Risk	≤ 2%

• 𝑥fQ# = 𝑥f + 𝑢f + 𝑤f
• 100x100	discrete	state	space

Control
strategy

Expected
path	length

Risk

Pure 130.8 0.64%
Mixed 104.2 2.0%

Risk:	2.28%

Risk:	0.64%



Piecewise	Linear	Approximation	of	SMPC
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MILP



Path	Planning	with	CCMPC

30Start

Goal

Mixed	strategy	(𝜆b)
Risk:	2.78%
Chosen	by	30.6%

Mixed	strategy	 (𝜆a)
Risk:	0.21%
Chosen	by	69.4%

Pure	strategy
Risk:	1.00%



Mars	Landing	Scenario
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Problem:	
• Minimize	driving	distance	to	

visit	two	science	targets	after	
landing

• Risk	≤ 0.1%

• 2000x2000	discrete	state	space
• Used	terrain	data	at	E.	Margaritifer

on	Mars

Control
strategy

Expected
cost

Risk

Pure 645.49 0.016%
Mixed 644.81 0.1%



Validation	with	Monte	Carlo	Simulation
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• 200	CCMPC	problems	
with	random	obstacle	
locations

• Mix	solutions	
outperforms	in	red	
dots

• No	pure	solutions	
outperforms	the	
mixed	ones



A	Paradox

• Before	the	coin	flip,	
risk	is	1%

• But	after	seeing	the	
result	of	the	coin	flip,	
the	risk	is	NOT	1%	any	
more!

• If	you	know that	Path	
B	is	chosen,	the	
chance	constraint	is	
violated!
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Path	A:	cost	=	20,	
risk	=	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	risk	=	1%

Path	B:	Cost	=	10,	
Risk	=	1.5%



Solution	to	the	Paradox

• Don’t	let	the	operator	
know	the	result	of	the	
coin	flip
– Then	the	probability	
of	failure	stays	at	1%

• Like	Schrödinger's	cat,	
the	vehicle’s	state	is	a	
superimposition	of	
Path	A	and	Path	B	
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Path	A:	cost	=	20,	
risk	=	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	risk	=	1%

Path	B:	Cost	=	10,	
Risk	=	1.5%



Multi-agent	Interpretation

• If	there	are	100	
homogeneous	agents
– Minimize	total cost	
while	ensuring	that	99	
of	them	are	expected	
to	be	safe

• Optimal	strategy:	
send	50	to	Path	A,	
send	50	to	Path	B.
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Path	A:	cost	=	20,	
risk	=	0.5%

Optimal	mixed	strategy
Path	A:	50%,	Path	B:	50%
Expected	cost	=	15,	risk	=	1%

Path	B:	Cost	=	10,	
Risk	=	1.5%



Conclusions

• In	a	nonconvex	constrained	stochastic	optimal	control	
problem,	randomizing	control	may	result	in	a	reduced	
expected	cost

• If	there	are	K stochastic	constraints,	K-randomization	is	
sufficient

• Developed	a	solution	approach	to	the	mixed	strategy	
control	through	dual	optimization

• Developed	an	efficient	solution	approach	to	a	problem	
with	K=1	using	root	finding

• Funded	by	the	ONR	Science	of	Autonomy	Program
– Office	of	Naval	Research	Grant	N00014-15-IP-00052
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