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Objectives

Project Objectives
• To reduce the costs to DOE SunShot cost targets of $75/m2, it was clear 

that all elements of the concentrator had to be addressed.  
• Negotiated with DOE a 3-phase project with several risk reduction and 

design activities to be performed in the 1st phase. The specific project 
objectives are: 
 design and development of a mirror module using an inexpensive reflective 

metalized polymer film bonded onto a light-weight structural rigid foam support, 
 design and development of a low cost nontraditional mirror module support 

structure, 
 selection of low cost drive components and associated control system, 
 design, integration and testing of a low cost concentrator, and 
 cost analysis of the proposed system to demonstrate $75/m2 collector system 

DOE target.

• Project Teaming
 Led by JPL - Gani Ganapathi PI, Bill Nesmith and Andrew Kindler)
 Partnership with L’Garde – Art Palisoc, Gyula Greschik and Koorosh Gidanian
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Major Project Phases and Milestones

Phase Key Milestones and Deliverables

Phase 1
(DESIGN & RISK REDUCTION)

• Material selection & fab processes 
validated

• System trades to optimize overall 
system

Phase 2
(DETAILED DESIGN & FAB)

• Reliability studies for 10 yr life
• Detailed system trades

Phase 3
(COLLECTOR SYSTEM BUILD & 

TEST)

• Reliability studies for additional 
20 yr

• Prototype detail design and build

• Validation testing
• Commercialization plans
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Design Performance Targets

Metrics from Jesse Gary’s report “Heliostat Optical Requirements” 
used as reference to drive foam dimensions in mirror module

Heliostat Optical Error Budget Summary 

Design driver for studies



Slide 5
Copyright 2016. All rights reserved.

Facet Design Trades and Outcomes

• Selection of foam material, dimensions driven by performance in windy 
conditions (4.86 mrad at individual and 1.62 mrad field average in 27 mph)

• Performance metrics and cost drove the design towards a foam sandwich with 
SS facesheets and ReflectTech mirror film

Reflective mirror film Stainless Steel

Adhesive

Rigid Foam
Moisture 
barrier

Moisture 
barrier

Reflective mirror film Stainless Steel

Adhesive

Rigid Foam
Moisture 
barrier

Moisture 
barrier
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Mirror Module 

EPS 
White EPDM 
Rubber Paint 

Stainless 
Steel

ReflecTech Mirror FilmAluminum 
Tape

3M #78 EPS Adhesive 

• 15 coupons developed for testing
• Test Coupons Identical to Mirror Facet Configuration
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Reliability Testing

Thermal Cycling /Humidity 
Freeze (L•Garde) (per IEC 

6218)  
Qty:15

UV TESTED (30 Yr Equivalent)

Bird Dropping (NTS) – ASTM D6485
Qty: 15

UV Test Equivalent to 10 to 12 years  
(Solar Light)

Qty: 15

Acid Rain/Salt Spray 
(Exova) – ASTM G85

Qty: 15

Post-Mortem Tests
(a) Reflectivity vs Wavelength (SOC)
(b) Hardness (Durometer) Test on 3 UV 

exposed coupons and 3 pristine 
coupons (Exova OCM)

Post-Mortem Tests
(a) Reflectivity vs Wavelength (SOC)
(b) Hardness (Durometer) Test on 

I. 10 UV exposed coupons and
II.12 pristine coupons

Phase II
Phase 

III

Post-Mortem test results show 
very little degradation in 
reflectivity and no degradation of 
the EPS substrate
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Phase 2 and 3 Mirror Facets

• Fabricated 11 mirror facets, and all have been characterized optically 
with photogrammetry.

• Average RMS slope error ~ 0.86 mrad
• Optical characterization validated independently at JPL using Reverse 

Hartmann
• Average RMS slope error ~ 0.6 mrad

Phase 2 Alpha 
Concentrators (1m x 1m)

Phase 3 Alpha Concentrators 
(1m x 0.667m)
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Design performance targets

Metrics from Jesse Gary’s report “Heliostat Optical Requirements” 
used as reference to drive foam dimensions in mirror module

Heliostat Optical Error Budget Summary 

Design driver for studies
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rails to hold 
the facets

standard truss 
wing on each side

Truss-based design selected

• With rationally budgeted error limit

• Modular structural 
schematic

 4.86 mrad → 1/3 (1.62 mrad) truss   + 2/3 (3.24 mrad) facet & rails
 3.24 / √2 = 2.291 mRad for each of facet & rail deformations, 

because they are orthogonal

rail

rail facet
s

dα
rail

dα = (dα facet
2 + dα

rail
2)1/2

dα
facet

eRMS,dα = (eRMS,dα facet
2 + eRMS,dα rail

2)1/2

 Facets simply supported 
beam between rail pairs

 Simple sandwich 
construction chosen from 
several alternatives
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System Studies

• Goal to optimize system configuration and cost
• Looked at several different system studies

• Controls – open loop vs closed
• Actuator types – linear vs slew drives, deep actuator

• Deep structure actuators - Due to inherent implementation 
challenges and no cost advantages accruing, the deep structure option 
was abandoned from further consideration.

• Standalone heliostats
• Independently controlled
• Independently powered

• – cost benefits convincing enough to warrant development (next slide)

• Thermal analyses – studies done to understand and reduce 
temperature gradients across foam structure

• Found painting backside white was sufficient to keep gradients within 
5-8 oC
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Structure Trades and Outcome

• 3 designs traded with 2 materials – Al 6061 and Steel
 “Flagpole”, small heliostat “islands”, optimized truss-based
 Optimized truss best for cost and mass

Slope error < 1.62 rms
Mass < 80 kg
Cost ~ $4/m2

Soltrace images at receiver
25m and 500m
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CAD and important design features

Envelope: 3x2 m 9 facets each 0.667x1m and 1.25” thick

C-rails

3 truss 
elements

Dual axis slew drivePV panel
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Finite Element Analysis of Prototype

• Load cases investigated:
1) Deflection and stress under 
2) 35mph winds at 0, 45 and 90°elevation angle
3) Dynamic response and eigenfrequency
4) Impact of PV panel on deflection
5) Stress during stowed condition (85 mph)

• Model was cleaned up and simplified for meshing
• FEA in SOLIDWORKS,  ANSYS and COMSOL Multiphysics

 Simplifications: drive = rigid body connection
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FEA Results - Dynamic response and eigenfrequency

Vibrations triggered by wind or vortex shedding are among the most 
severe error sources for heliostats 
• Resonance frequency of the structure needs to be investigated

• First 5 eigenmodes were found 
to be in the 17 to 20 Hz range

• Simulated frequency was 
higher than real values because 
of simplifications

• Model was validated with 
measurement data
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FEA Results – Other findings

• PV panels at bottom increase deflection from 0.8mm to 1.5mm
• The maximum slope error was 0.71 mrad (COMSOL) near the 

attachment points for the facets at the bottom. Averaging across the 
entire face of the heliostat, the average slope error was calculated to 
be 0.4 mrad.
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Fabrication of Mechanical System (Prototype)

Truss elements:

Dual axis drive:Fastening & 
Joining:

PV Panels:

Electrical:Sensors:

Control hardware:

Mirror facets: C-rails:
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Prototype Assembly – mirror module assembly

 C-rails were 
clamped on 
optical table

 Aluminum gage 
was used to 
space rails

 Glue was applied

Aluminum L-profile

C-rail

Flat surface

Y

Mirror facet
lif

t

lif
t

Keep centered Keep centered
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Prototype Assembly – integration of PV panels

 Aluminum struts for 
PV mounts were 
manufactured

 PV panels were 
mounted on c-rails
 Angle is easy to adjust
 Slight compliance 

noted
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SolTrace Optical Model
• Control algorithm developed with error sources

 Pedestal tilt, axis bias angle, non-orthogonality, canting, gravity sag
• Real pointing vector input into SolTrace
• Assumptions:

 Square 100 m2 heliostat and square 225 m2 receiver
 Heliostat with 0.94 reflectivity (Reflect-Tec)
 Heliostat slope error of 1.5 mrad, specularity error of 0.2 mrad

Ideal Pointing Flux Density Map
Total Integrated Flux = 59569 W

Real Pointing Flux Density Map
Total Integrated Flux = 48527 W
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Error Model Flowchart

21

• The error model provided by 
Malan[1] has been expanded. The 
new mathematical model 
describes the following error 
sources: 

• Pedestal tilt error 
• Axis bias angle error 
• Non-orthogonality error 
• Translation error 
• Canting error (Stone[2]) 
• Gravity sag error (Stone[2]) 

Figure 1: Revised Error Model Flowchart
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Control System Architecture

Wind Speed

Calibration
Images

Anemometer

Camera

Heliostat Status Database
Heliostat Operational Log

Image Processing Unit

Cluster Scheduler

Main Controller

• Error Model Parameters
• Cluster Calibration Scheduling
• System Flood Commands

• Emergency Stow
• Software Update

Heliostat Status Updates

Solar Position Algorithm GPSTimeCluster Gateway

Calculate Normal Vector

• Forward Controller System 
Flood Messages

• Solar Vector Data
• Heliostat Calibration 

Scheduling
• Request for Status Update

Heliostat Status Updates

Correct Error

Actuator Control

Heliostat Controller
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Integration of Power and Control Systems

Charge Controller PV Panels24V Battery

Emergency Stop

DC/DC Converter

Gateway Controller 
(Raspberry Pi)

Heliostat Controller 
(Arduino Uno)

5V 
Power

H Bridge Motor Driver 
(x2)

5V Logic 
Connection

24V Power

Motor (x2)
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Validation testing

• The original validation test was quite ambitious in scope, 
but had to be re-scoped to address the following key goals:
 Validate structural model through point loading
 Demonstrate independent tracking
 Demonstrate self-powered tracking with adequate power and 

energy margins
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Site Selection

25
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Support structure deflection test

Time and budgetary constraints required a different “quick and easy” solution
• point load applied by spring scale
• deflection measured with machinist’s gauge
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• Measurement: force of 10 kg (or 98 N) deflects the c-rail 0.11 inches (2.8 mm)
• Simulation: COMSOL (~0.9 mm) Solidworks (~1.2 mm), ANSYS (~1.65 mm) 

Deviation due to:
• Rigid connection in FEA
• Drive and pylon neglected in FEA
• Backlash of worm gears (~1.65 mm)

Support structure deflection test – comparison with FEA
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Heliostat Image Adjustment

• Immediately after the heliostat prototype was assembled an image was projected 
to a wall about 50m (~150 feet) away. 

• Since none of the canting and focusing options had been tested, the initial image 
was rather spread out. 

Formerly 
discarded
facet re-used
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Heliostat Image Adjustment

• The range of the adjustment screws was sufficient 
• Aluminum tape does not reflect the light as well and results in a dark area 

between The bright spots of each facet (indicated as A) and B)
• Previously discarded “wavy” facets cause spill of radiation C)
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Large scale (~100m2) design at high production volume

Some components show a non-linear “$/m2-characteristic” when scaled 
 Small heliostat slew drive: $ 500 for 6m2  $83/m2

 Large heliostat slew drive: $ 2500 for 100m2  $25/m2

Factor ~1.85
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System Studies – Standalone power vs cabling cost
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Large scale (~100m2) design at high production volume

Costs can be reduced further by use of float glass
The cost information contained in this document is of a budgetary and planning nature and is intended for 
informational purposes only. It does not constitute a commitment on the part of JPL and/or Caltech.
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Commercialization

• Engaged large CSP vendors – early interest shown in mirror 
modules

• Patents filed
• L’Garde investing IR&D funds
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Summary

• JPL and L’Garde have demonstrated through a 
well-thought out and rigorously implemented 3-
phase project that it is feasible to develop low-
cost concentrators which are:
 Modular in design
 Low-cost and lightweight lending to easy installation in 

the field
 Capable of being easily canted to focus image
 Standalone with self-contained power system and 

controller

• Commercialization efforts are on-going and we 
believe there is a market for such a design
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