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Error Models for Performance Budgeting
• Classic system engineering practice utilizes “RSS” Wavefront 

Error (WFE) budgets, wherein:
– WFE = sqrt((coef1*std(error1))2 + (coef2*std(error2)) 2 + ...)
– Here the errors of interest include misalignments, figure errors, and 

sensing and control errors
– For both static and drift conditions

• This paper:
1. Derives WFE coefficients for component errors, based on detailed 

linearized ray-trace models
2. Derives models for end-to-end performance, including active optical 

controls, such as rigid-body alignment actuators, or deformable mirrors
3. Shows that RSS error budgets are covariance analyses
4. Illustrates the error modeling process for a notional “LUVOIR”-like large 

active space telescope
5. Briefly discusses extensions to other metrics (Strehl, MTF, ...) and to 

other conditions (correlated errors, multiple fields of view, ...)
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Example Telescope

• Three-Mirror Anastigmat (TMA) wide field notional design, from the 
2008 “ATLAST” study (see references)
– Segmented, 8-meter class aperture
– Rigid-Body Actuators (RBAs) on the PM segments and SM
– Deformable Segments, and a Deformable Mirror at a reimaged pupil
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Modeling Image Formation – in a Nutshell

• The WF phase is computed as the Optical Path Difference 
(OPD) of the ray grid at the exit pupil  WFE metric

• The ray grid is mapped to the elements of a complex amplitude 
(CA) matrix, determining CA phase (and support)

• Fourier physical optics propagates the CA to the image plane, 
capturing diffraction effects, via an FFT + phase shift

• The modulus squared of the field at the FPA is resampled to 
match FPA pixel size – voila, an image!  Strehl, EE metrics

• Source at infinity: modeled 
as a grid of parallel rays

• Each ray samples a small 
patch of the beam

• Rays trace through the 
entire optical train to the FPA

• Then back to the exit pupil, 
where the grid is restored

Ray Grid 
in cross-
section

Ray Grid
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Linearized Optical Models: Wavefront

• In quantifying optical performance, it is 
convenient to vectorize the various 
performance variables...

• OPD matrix is a 2D map of the WF, 
computed by an optical analysis code, or 
measured by a WF sensor, interferometer, 
etc.

• w is the vector form of the OPD, formed by 
stacking the columns of OPD
w = vector(OPD) OPD = matrix(w)

• WFE is the RMS of the OPD
WFE = RMS(w) = RMS(nonzeros(OPD))

(or other code)
OPD =

w =
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Linearized Optical Models: Sensitivity 
Matrices

• This shows the dOPD 
due to a particular RBA 
action: a twist motion of 
Segment 2

• The sensitivity of the WF 
w to that poke is the 
matrix dw/dPoke:

• Here  

• The total WF w is a linear function of the optical state x, figure errors z, 
RBA controls uRB, DM controls uDM, segment figure controls uFCA, design 
WF wnom:, and any other terms of interest

• The next few slides illustrate each of these terms
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The Effect of Segment and SM Motions

• The optical state vector x captures the RB perturbations of the optics, the 
rotational (θ) and translational (δ) pose changes of each optic:

– For the ith optic: – RBA controls uRB couple to x via the
actuator kinematics (hexapod, e.g.):

– For all optics:

• OPD and Point Spread 
Function (PSF) image 
after “poking” individual 
RB Degrees of 
Freedom (DOF)

• RB perturbations are 
due to:

– Misalignments
– Controls uRB
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The Effect of Surface Figure Errors

• The Surface Figure Error (SFE) vector z represents the low-order Zernike 
aberrations of each optic:

– For the ith optic: For all optics:

• OPD and Point Spread 
Function (PSF) image 
after “poking” individual 
SFE terms

• SFE perturbations are 
due to:

– Fabrication errors
– Thermal and other 

deformation effects 
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The Effect of DM Actuators

– The DM control vector uDM has 690 actuators (of 1313) in the telescope on-axis 
clear aperture

• Simulated DM influence function is based on Timoshenko membrane 
model

– Coupled response over ~ 5x5 actuator spacings

• OPD and Point Spread 
Function (PSF) image 
after “poking” individual 
DM actuators

• DM is of the “bed-of-
nails” type, with 
actuators pushing 
normal to a thin 
facesheet
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The Effect of Segment Figure Control 
Actuators

• The Surface Figure Error (SFE) vector uFCA has 342 actuator voltages for 
each of 18 segments, for a total of 6156 actuators in the clear aperture:

– For the ith optic: For all optics:

• OPD and Point Spread 
Function (PSF) image 
after “poking” individual 
PM segment Figure 
Control Actuators 
(FCAs)

• Actuators are of the 
“surface parallel” type, 
based on AHM design

– FEM simulation
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Wavefront Control

• Wavefront control 
(WFC) objective:
– Maximize image 

quality, by minimizing 
WF error

• Across the full science 
Field of View

• Do this by 
measuring the WF 
across the FOV
– Using WF sensing, 

looking at stars
• Then control the WF 

to match the 
nominal OPD
– Using PM segment 

and SM Rigid Body 
Actuators, Segment 
Figure Control 
Actuators, and the 
DM actuators

• Can actively 
maintain OPD using 
metrology feedback
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Wavefront Control Law

• Wavefront Control (WFC) begins with Wavefront Sensing (WFS) –
some means of estimating the system WF, as west

• Then the control problem is to choose values for u that minimize the 
cost function:       J = 0.5 wTw, 

subject to:           and:

• Substituting wc for w in the cost function:

• The control solution comes at the stationary point dJ =0:

• The classic “pseudo-inverse” control law is thus (don’t forget the 
bounds!):

Note: u here refers 
to any or all of the 
controls uRB, uDM, or 
uFCA :
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End-to-End WF Performance

• Putting it all together, the OPD prior to control is:

• WF sensing gives a noisy estimate of w:

• WF control feeds back the estimated OPD to drive w to wnom :

• Substituting for west and u1, and then rearranging terms:

;     here: 

• The “control projection matrix” Pu will be zero only if the various actuators 
have full controllability of the OPD at the sampled ray density

• The combined system WFE, post control, is the RMS of the OPD:

This model gives the end-to-end WFE performance 
for a single case, a single realization of the various 
component errors and noises.
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End-to-End Performance Statistics

• The expected value of WFE for many realizations of the component 
errors and noises can be computed using the linear model, based 
on the statistics of those errors and noises: their covariances

• In particular, the covariance of the end-to-end OPD is:
, or:

• Here the X0, Z0, U, and West signify the covariance matrices of x0, z0, 
u, and west, respectively...

• ...and the expected value of the WFE, given these statistics and the 
linear model, is:

These matrices have large dimensions, 
nray-by-nDOF, generally. But WFE is a 
scalar metric...
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Lumping the Effects of Similar Terms

• Many of the component errors will be uncorrelated, with the same 
statistics (zero mean, same stdev): these can be grouped together
– Initial segment misalignments can have the same stdev for each 

segment in each axis, so that the initial covariance is diagonal:

– Plugging this into the W1 equation, the contribution of segment 
misalignment to the total, post-control WFE is:

, where:

– Every other term in the model can be treated the same way. For 
instance:

This is a scalar expression for the 
(scalar) WFE due to the action of many 
different component errors, all of which 
have the same (scalar) initial stdev.
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Combining: a Scalar End-to-End WFE Model 

• Combining all such terms, this covariance analysis ends up with the 
classic RSS error model, but with coefficients based on detailed ray-
trace calculations, and embedding accurately the effects of various 
controls:

• Note should be taken of certain implicit assumptions:
1. System is linear, and sensitivities are accurate
2. Component errors are zero mean, normally distributed, and uncorrelated

• Generally, these assumptions will not be met – but fortunately, taken 
on the whole, they will be met closely enough

• Also: the 〈 coefficients can be computed using Monte Carlo methods
– Monte Carlo and Covariance Analysis agree when assumptions are met
– Monte Carlo methods can better handle nonlinearities, correlated errors, 

and/or (some) non-normal distributions
– Monte Carlo methods can be more computationally efficient, and can 

use experimental data if that is available
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Spreadsheet Form: Concluding the Example
• The scalar WFE 

model is easily 
realized in 
spreadsheet form, 
and can be linked to 
error block diagrams

• This form allows the 
system engineer to 
rapidly change error 
distributions, while 
accurately assessing 
the consequences
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Example Terms, and System Roll-Up
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BACKUP
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Covariance and Monte Carlo Agree

• Compares linear covariance analysis to nonlinear Monte Carlo 
analysis, showing good agreement

• 4DOF WF control is effective in compensating segment decenter 
translation error

• 4DOF WF control is ineffective in compensating segment twist
• Floor is set by design error in these simplified cases

Model: btb.in
V. 3/26/02
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Error Statistics (cont.)
Other component errors are highly correlated, such as figure error based 
on PSD model and sampled across mirror surfaces

Xfig = fcn(ω1/2, p, A)
Xfig (i,j) = C ρ(i,j)-p

The figure covariance matrix Xfig can be directly generated using a 
generating function

Xfig has size N4, yet reduces to a scalar contribution to the RSS model

σfig
2 = trace([I-CuG] Cfig  Xfig Cfig

T [I-CuG]T)

Rather than directly evaluate the covariance, it is computationally more 
efficient to perform Monte Carlo simulations to establish parametric 
dependencies for σfig

2

σfig
2 = fcn(ω1/2, p, A)

Another alternative is a direct PSD-based method...
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More Wavefront Control Laws

• It can be very useful to damp the control response, by including a 
penalty cdu on the control change du, so that J = 0.5 (wTw + cdu

T cdu) , and 
the control is:

• Another useful penalty can be imposed on the total u, to keep it near 
some preferred value ur; in this case the control is:

• Weighting matrices on w, du and u can be used to shape the control: by 
frequency-weighting or masking the WF (Mw); by setting preferences on 
actuators to change (Mdu); or to keep selected controls near the 
reference (Mu); in this case the control is:
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Multi-Field WFS&C 

• To best collimate the PM and SM of a telescope after launch, it is 
necessary to measure and correct the WF at at least 3 field points: 
center and 2 corners

– Not doing so runs the risk of having poor WF over much of the field!
• The control laws are the same in this case, but the sensitivities and 

measurements are concatenated: 

• The classic control 
is thus:
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Multi-Field WF Control Performance

• Single-field WFSC corrects the WF 
only for the field in which the data 
was taken

• By measuring at multiple field points 
and solving for the joint optimum, the 
telescope can be fully collimated

WFE following Multi-Field WFSC at 5 fields (worst case of 20)
Control: PM segment and SM 6DOF motion

OPD maps correspond to worse-
case WFE of 20 trials. The (mean, 
std_dev) of residual WFE at each 

field position (nm) are shown.

Perturbed WFE at 5 
field points (worst 

case of 20)

SF WFC (99,38) SF WFC (95,32) SF WFC (109,40) SF WFC (99,32)SF WFC (53,11)

WFE after Single-
Field WFSC, seen at 

5 fields (nm RMS) 
(worst case of 20)
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PSF Morphology

• PSF computed on 7.5 
mas pixels

• Wavelength is 1 um
• R = 5, approximated with 

10 spectral lines
• Blue ring is at 150 mas, 

corresponding to a 
spatial frequency of 5 
cycles/aperture
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OPD Spatial Filters: Convolution Form 

• Filter is a sharp cutoff, passing only OPD spatial frequencies 
less than 5 cycles/aperture, which corresponds to 150 mas 
EE

• Convolution filter uses Fourier transform to select only the 
low spatial frequencies present in the OPD:
Spectrum(OPD) = FFT(OPD)
Spectrum(OPDLow-Pass) = Spectrum(OPD) .* Filter
OPDLow-Pass = FFT-1(Spectrum(OPDLow-Pass)) .* Mask

• High-pass OPD is the full OPD minus the low-pass OPD:
OPDLow-Pass = OPD - OPDLow-Pass

Model: btc.in
V. 5/7/02
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• A pupil OPD matrix can be writen in vector form
w = Vector(OPD) = [column(OPD,1); column(OPD,2); …]

• For each pixel in the filter bandpass, a complex “basis 
matrix” is computed and then vectorized

Spectrum(OPDLow-Pass) = Spectrum(OPD) .* Filter
Basisij = FFT-1(Filter(i,j)*Delta(i,j))
Clow-pass = [Vector(Basis1); Vector(Basis2); … ]

• The matrix filters are computed from the matrix of bases
HLowPass = Clow-pass * C+ 

low-pass HHighPass = I – Clow-pass * C+ 
low-pass

• The filtered OPD is obtained via a matrix multiply
OPDHighPass = Matrix(HHighPass * w)

OPD Spatial Filters: Matrix Form
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Matrix Form of High-Pass WF Filter

• Raw OPD for a typical 
case is decomposed into 
low and high SF 
components

– High-pass = OPD - Flo•OPD
• Discrete Cosine and 

Discrete Fourier 
transform methods 
compared

• Fmtx is a matrix-multiply 
version of DFT filter

• Matrix filter is generated 
directly from transform 
filter

– Joe’s EE filter 
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WF Control,
Example 1

• Columns show OPD and PSF for 3 successive stages:
– Initial uncorrected optics
– Following segment RB control (piston errors are left in anticipation of 

RoC correction, which has large piston components)
– Following segment RB and RoC control

Initial errors (1-sigma):                   
Segment translation = 200 um
Segment rotation = 300 urad
RoC error = 1 um

Segment figure PSD parameters:
Amplitude = 30 nm
1/2 power freq = 0.003 cycles/mm
Roll-off exponent = -3

No WF sensing error
No WFC actuation error

files btcExample.m, btc.in, btc.f
5/13/02

Model: btc.in
V. 5/7/02
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• Demonstrates that EE comes from high spatial-frequency 
WFE

• Filter has sharp roll-off at 5 cycles/aperture

Encircled Energy and Band-Limited WFE for 
Example 1

Model: btc.in
V. 5/7/02
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WFC Example 2

• A more aberrated case...

Initial errors (1-sigma):                   
Segment translation = 1 mm
Segment rotation = 3 mrad
RoC error = 5 um

Segment figure PSD parameters:
Amplitude = 80 nm
1/2 power freq = 0.003 

cycles/mm
Roll-off exponent = -3

WF sensing error = 5 nm
WFC actuation errors

Segment rotation = 5 nrad
Segment translation = 10 nm

files btcExample.m, btc.in, btc.f
5/13/02

Model: btc.in
V. 5/7/02
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Encircled Energy and Band-Limited WFE for 
Example 2
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High-Pass WFE Predicts Encircled Energy

• WFE generated using random initial errors as filtered by WFC 
system

• EE objective met at 79 nm High-Pass WFE
Model: btc.in
V. 5/7/02
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High-Pass WFE is an Accurate EE Predictor

• Encircled Energy is 
degraded by scattering 
outside of PSF core

• This is caused by high 
spatial-frequency WF 
errors

• This chart confirms that 
high-pass WFE 
contributes nearly all the 
EE degradation in the 
region of interest

• EE is essentially 
unaffected by low-pass 
WFE in the region of 
interest

• Polynomial EE model is 
not as good a predictor

Model: btc.in
V. 5/7/02
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