
State-of-the-Art Modeling of Contaminant Transport in 
Vacuum Chambers and Space Environments

* Jet Propulsion Laboratory, California Institute of Technology

© Copyright 2019 California Institute of Technology. U.S. Government sponsorship acknowledged.

Dr. William Hoey,* Dr. John Anderson,* Carlos Soares *



jpl.nasa.gov

Contamination Control at NASA JPL:
As planned and proposed space exploration missions grow ever more 
ambitious in their scientific objectives their instruments necessarily 
increase in performance – as well as in sensitivity to contamination.

Contamination control is critical to ensuring the success of such 
missions, particularly:

• Missions that fly sensitive 
mass spectrometers.

• Europa Clipper (inset)

• Missions intended to 
detect organic samples.

• E.g. Mars 2020
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Contamination Control at NASA JPL:
Characterizing contamination vectors with testing and modeling.

Spacecraft self-induced contamination – many sources, e.g.:
• Molecular outgassing or desorption from external surfaces.

• Propulsion systems:

• Conventional mono- / bi-propellant engines: plumes with gas and 
liquid phase byproducts; leaks of unburnt propellant.

• Electric propulsion: sputtering of incident surfaces.

• Venting of internal emissions through blanketing seams.

During fly-bys, molecular outgassing is the dominant source.
• Testing: monitoring of thermal vacuum chamber hardware bakeouts.

• Modeling: transport vectors include direct, reflected, and return flux.

Standard testing and modeling practices can not capture the 
rates and vectors relevant to highly-sensitive scientific missions.
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Required Outgassing Rates
Motivating novel tools for monitoring and modeling bakeouts.

Example: OGRs for a 
mission with a sensitive 
mass spectrometer.

How can rates of this 
order be measured for 
spacecraft materials?

• At Europa, the radiation 
environment required a 
novel test campaign…

For more detail, refer to Dr. 
Anthony Wong’s presentation, 
“Evaluating the In Situ Outgassing 
Characteristics of Silicone 
Adhesives in an Europa-Like 
Environment”
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Vacuum Chamber Molecular Transport
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Measuring outgassing rates during thermal vacuum 
chamber operations requires modeling transport in 
the chamber environment and deposition onto an 
instrument, i.e. a quartz crystal microbalance (QCM).

Pressures during thermal vacuum chamber 
operations are sufficiently low for transport to be 
entirely free-molecular ( < 10−5 torr; MFP > 1 m).

• Molecules do not collide with one another – instead 
transport is line-of-sight between surfaces. 

• Each surface interaction is well-modeled as an 
instantaneous re-equilibration to the surface and 
Maxwellian emission (cosine-distributed angle).

Photograph: QCM Research Mk. 10 TQCM.

Modeling tools: 

• ray-tracing Monte Carlo schemes 
(e.g. CERN’s MOLFLOW+ code)

• view factor matrix calculation 
(JPL CC in-house solvers)
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Thermal Vacuum Chamber Operations:
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Molecular outgassing, free-molecular transport.

Photograph of this JPL chamber from Fields, K. 2009. “The certification of environmental chambers for testing flight hardware,” 25th Aerospace Testing Conf.
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Thermal Vacuum Chamber Operations:
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Sinks: vents, pumps, and cryogenically-cooled surfaces.
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Coldplate 0.74

Coldplate piping 0.22

Pump exit planes 0.03

QCM (body and face) 0.01

QCM measurement face 0.0004
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Converting Measurements to OGRs:

Methodology:

• Creation of vacuum chamber geometric 
models, including the identification and 
measurement of critical hardware – e.g. 
position, size of vents; of cryocooled 
piping; of coldfingers and QCMs; and

• FM transport simulations to calculate 
QCM transmission (pictured).

Benefits:

• Quantifies chamber geometric and 
temperature / getting effects, and is 
therefore an improvement over transport 
modeling with area-fraction estimates.

• It also allows for novel test 
configurations – e.g. multi-QCM 
measurements during bake-outs – and 
for iterative chamber designs to 
optimize transport.
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Iterative Vacuum Chamber Design:
Optimizing QCM transport for low-outgassing-rate testing.

In an example test: 1 × 10 −4 of total outgassed mass lands on each QCM (𝛼).

• Typical of QCM transmission in large chambers without effusion cells (i.e. predominantly line-of-sight)

Applying nominal values for a RIOT sample OGR, area, and test time:

𝑚ொ஼ெ = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑂𝐺𝑅 ∗ 𝑆𝑎𝑚𝑝𝑙𝑒 𝐴𝑟𝑒𝑎 ∗ 𝑇𝑒𝑠𝑡 𝑇𝑖𝑚𝑒 ∗  𝛼

e.g. 𝑚ொ஼ெ = 10ିଵଷ ௚

௖௠మ ௦
∗ 50 𝑖𝑛ଶ ∗ 12 ℎ𝑟𝑠 ∗  𝛼

Integrated over the test, just 𝒎𝑸𝑪𝑴 ≈ 0.1 ng would deposit per QCM!

• If you want to resolve O[10ିଵଷ ௚

௖௠మ௦
] outgassing:

sample area could be increased by at most a factor of two...

test time could be extended by at most a factor of two…

past experience shows that transmission fraction 𝛼 can be increased by at least an order of 
magnitude with chamber geometry / boundary condition changes.

The optimal strategy to increase measurements to detectable levels: 

Increase QCM transmission fraction.
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JPL Dynamitron chamber free-molecular transport:
Modeling results, baseline configuration.
Figure: 3-D cutaway of the chamber interior, colored by fluence of sample-

outgassed molecules per unit area. Cutaway regions shown translucent.
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JPL Dynamitron chamber free-molecular transport:
Modeling results, baseline configuration.
Result: A cold (80K) shroud collects > 99 % of outgassing, < 1 % to the pump vent.

1 × 10 −4 of total outgassed mass deposits onto each QCM (𝛼).



jpl.nasa.gov

Iterative Vacuum Chamber Design
Optimizing QCM transport by simulating efficacy of modifications:

05/17/2019 State-of-the-Art Modeling of Contaminant Transport in Vacuum Chambers and Space Environments 12

1) Heated inner shroud to promote reflective transport.
2) Foil seal on the inner shroud (beam-permeable).
3) Conductance tube extending to the QCM faces.
4) Mount sample plate flush against beam shield.

Effect: Increased QCM transmission as much 
as 40x over baseline chamber configuration.
Calculated transport compares well against empirical testing.
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Spacecraft Contamination by Return Flux:
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Molecular contaminants that outgas from a spacecraft “reflect” from an 
ambient exosphere during fly-bys and return to impact sensitive instruments.

This return flux is a primary vector for the self-induced contamination of 
instruments with low view factor to the spacecraft (e.g. mass spectrometers).

Figure: Europa Clipper, colored by the 
return flux originating from RAM-facing 
array panels (here, the array backside).

Model: We compute contaminant return 
flux originating from solar array back, 
front, and edge faces to all spacecraft 
surfaces using a validated Boltzmann 
BGK solver (Roussel et al., 2002).
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Return Flux Boundary Conditions:
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Outgassing Material Composition

RIOT mass spectrometer measurements show 
abundance of benzene (78 amu, øKD 585 pm).

Trajectory, Atmospheric Interaction

Spacecraft speed relative to body, RAM angle.

Atmospheric density and composition.
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(Column) return flux originating from solar array 
thermal side during a close-approach fly-by; frames 
spaced by minute. Note the preferential return of 
ram-directed outgassing to instrument surfaces.
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Contaminant Source
Representative array 

outgassing rates 
[g/cm2/s]

Peak return flux to an 
instrument, per source 

[g/cm2/s]

Peak return flux to an 
instrument, total

[g/cm2/s]

Solar array active 
(solar cells) 1.0E–14 < 1.0E–20

5.0E–16
Solar array thermal 
(backside) 3.0E–14 < 4.0E–16

Solar array edges 
(panel venting) 2.0E–12 < 9.0E–17

Figure: Return flux to an instrument 
from a typical Europan fly-by: the 
solar array’s ram-facing thermal 
side dominates return flux to the 
instrument suite. 

Active-side (solar cell, facing away 
from ram) contributions are minimal.

Table: Representative outgassing 
rates for a typical flight system’s 
solar array and resultant peak 
molecular return flux rates per 
Europan fly-by.
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Conclusions
• JPL Contamination Control has developed sophisticated capabilities for 

simulating free-molecular transport in vacuum chamber environments. 
• We demonstrate a methodology for determining hardware outgassing rates from 

Quartz Crystal Microbalance (QCM) measurements that enables the verification of 
bake-out exit criteria through the quantification of chamber geometry and 
temperature effects on free-molecular transport.

• These capabilities allow us to characterize outgassing rates of concern to high-
sensitivity scientific missions that could not be resolved in standard testing.

• Spacecraft self-induced contaminant return flux contributions to science 
instruments can be significant – especially to next-generation and state-of-
the-art mass spectrometers intended to detect organics – and must be 
characterized to ensure that mission science objectives can be achieved.  

• The cases illustrated here, generated for a typical Europan fly-by, show a return 
flux of approximately 1 % of the effective outgassing rate from a solar powered 
spacecraft configuration.  Hence, selection of low-outgassing materials (e.g., 
exhibiting rates of 1.0E–14 to 1.0E–15 g/cm2/s) is desired to limit molecular return 
flux from the flight system to science instruments.
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BACKUP: Quartz Crystal Microbalances
• Measures changes in mass by monitoring 

changes in resonant beat frequency between two 
matched crystals

• Crystal specifies the resonant frequency and 
therefore the mass calculation

• 15 MHz crystals: 1.964 × 10-9 g/cm2/Hz

• QCM Hz/hr exit criteria are set based on chamber 
layout and outgassing rate requirements

• QCMs are very sensitive to small temperature 
changes, vibrations
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