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Overview

« Ballute history

e Parachute deployment device

« Ballutes as SIADs

e Use with high-beta entry vehicles
e Future work
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Trailing Decelerator Development

Ref: NASA 'I;I;l D-1601
| o

 Beginning in 1960’s, NASA and the Air
Force began researching and
developing trailing decelerators for : _
launch vehicle and entry vehicle 107 cone batheon 0° cone Sphere
recovery

 Initial concepts focused on simple
geometries like cones and spheres
and quantifying their aerodynamic
performance

» Later geometries evolved to consider
a more structurally optimal shape

Ref: NASA TN D-1601
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Isotensoid Theory

 An engineer at Goodyear (Houtz)
developed a more structurally optimal
geometry => Isotensoid

— Allows for use of thinner gage, and lighter,
materials

» |deally, isotensoid theory creates a
stress state that is equal in both radial
and circumferential directions

— Actual implementation has concentrations
due to drag and presence of a burble fence
that creates a load concentration

— Resulting geometry is still relatively low-
stress though

Ref: Goodyear Aerospace Corp

« This trailing isotensoid concept was
termed a “ballute” by Goodyear
aerospace corporation
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Goodyear Ballute Development

» Goodyear continued to mature the ballute
concept through the decade, largely
through Air Force sponsorship

— Aerodynamic Deployable Decelerator
Performance Evaluation Program (ADDPEP)

* Program covered significant analysis,
maturation of materials, supersonic wind
tunnel testing, and multiple sounding rocket
flights of 5-ft diameter test articles

« Overall very successful program that
matured the concept significantly

Bloetscher, F., “Aerodynamic Deployable Decelerator Performance Evaluation Program, Phase
II,” Air Force Flight Dynamics Laboratory Technical Report, AFFDL-TR-67-25, Apr. 1967.
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Aerodynamics

« Compilation of performance data
shows rather consistent
performance, though much of it
behind slender bodies

* Qualitative assessment of stability
always very favorable

— Very little motion of the ballute in the
wake of a vehicle

Ref: Goodyear Aerospace Corp
06/29/2016
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Inflation & Deployment

Closed, isotensoid design is amenable .y e
to pressurization via ram-air

Most designs incorporated a number of
inlets on the periphery of the ballute for
this purpose
— Early versions were raised to get out of the 1
boundary layer and get higher total pressure

air, more recent concepts utilized surface
mounted inlets for simplicity
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Ref: Nebiker, F. R., “Aerodynamic Deployable Decelerator

MOSt ﬂlg ht teStS aISO |ncorporated Performance-Evaluation Program,” Air Force Flight Dynamics
. . . . Laboratory Technical Report AFFDL-TR-65-27, Aug 1965.

some sort of inflation aid to provide

Initial pressurization

— Exception was a 5.5 m ballute tested by
NASA which failed to inflate successfully
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Additional Usage Examples

« After initial development, the
ballute saw numerous tecovery Systems covovean atnossace QR
applications as a supersonic

decelerator or stabilization
device GEMINI BALLUTE

Jnder Contract 430157 with McDonnell Aircraft Corporation, Goodyea

Aerospace developed and qualified the BALLUTE® systemused to stabiliz

‘he Gemini astronauts after high-altitude emergency ejection (7,500 t

Examples 79,000 ft). Mach numbers ranged to 1.9
.. . . .y . >sf. During an abort event, the BALLU
« Gemini ejection seat stabilization

» Meteorological Sounding Rocket
Decelerator

 Proposed as pilot for Mars Viking
Mission by Martin Marietta

Ref. Goodyear Aerospace Corp
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Recent Experience: NASA LDSD ballute

Developed as a parachute
deployment pilot device
Flown at Mach 2.7, 500 Pa in
a blunt-body wake
Specs:
« Silicone-coated Kevlar
broadcloth
* Pyrotechnic-initiated
methanol inflation aid
 Mortar-deployed
18 kg mass
« 8000 N drag force
Heauvily relied on analysis,
with minimal testing prior to
supersonic flight

06/29/2016

Burble fence

8x 67 tall
ram-air inlets

\ Inlet support
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LDSD Supersonic Flight Dynamics Test Overview
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Recent Experience: NASA LDSD Supersonic
Test:







After success of LDSD ballute, how can this
be infused into a Mars mission?

1. Parachute deployment (same use as LDSD)
2. Supersonic decelerator

On a heavy robotic mission (4.4m trailing ballute
against 6 m attached toroid)

Aerodynamic decelerator assisting supersonic
retropropulsion (human-scale)
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Ballutes as Parachute Deployment Devices

4.5

Preliminary ballute — Nominal Inputs
sizing for parachute | I
deployment: 57| —cp00
g 3f|--V —45ms
5
Dy =2 mdeploy( VLZS + . ) ;22.5
nCp \2qxys Py g 2
. % 1.5¢
Assumptions: A
« Constant deployment 05 . . . . .
10 15 20 25 30 35 40
mass Parachute Diameter, m

» Constant Cd Nominal inputs represent typical Mars conditions
« Constant q « Mach 1.7, 400 Pa parachute deployment
e 200 kg/m? vehicle ballistic coefficient
« 38 m/s parachute line stretch velocity
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Parachute Deployment Device (PDD):
Mass Comparison

In order to compare mortars to pilot

100 deployment, we consider the
N D following:
——INOomina
=2 g0kl PDD, Beta - 50 « Parachute mass model, f(D,)
% o LDSD PDD Model « Ballute mass model, f(D,)
é Db oD Actual » Mortar mass model, (M)
ode . .
2 60 % MSL Mortar Actual  Pilot ballute model, (previous
73 chart)
g 40
g
° .
3 0l Conclusions:
- « Ballute PDD offers mass savings
over parachute mortar
010 15 20 75 30 35 40 ¢ Parachute mortar has advantage

Parachute Diameter, m of single stage system
Trade simplicity with mass
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SIADS: Trailing Ballute vs Attached Toroid

Mach Number
n

——SIAD + Chute

— Pilot Ballute + Chute
Chute Only

-------- Chute Deployment Box

0.5 1 1.5
Dynamic Pressure, kPa

Future Mars landing mission
with a ballistic coefficient of 230
kg/m? and low L/D

— The trajectory never achieves
deployment conditions of the current
technology parachutes

Need for a supplementary
decelerator. We considered “Off
the Shelf” tech SIADsona 4.7 m
diameter aeroshell:

— Trailing ballute (4.4 m LDSD)

— Attached toroid (6 m LDSD)

Both SIADs deployed at Mach 3
for a direct comparison
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SIADS: Trailing Ballute vs Attached Toroid

Attached Toroid Trailing Ballute
106 kg (6 m diameter + « 33 kg (4.4 m diameter +
gas generators, no cover mortar)
panels) « Relatively simple
 More complicated mechanical interface
mechanical interface « Must share aft section of
o Uses relatively empty real entry vehicle with
estate on back shell parachute

 Requires thermal
protection during
hypersonic phase
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Mach Number

Ballutes for High Ballistic Coefficient Vehicles
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10 15 20
Dynamic Pressure, kPa

25

Without new designs and
gualifications, parachutes can’t
be used with high (>= 500
kg/m?) ballistic coefficient
vehicles

— Terminal velocity exceeds Mach
number limits for parachutes

— Dynamic pressure is 10x typical
This defines what
environments the ballute
needs to survive

— Desire capability at Mach 4 and 5
kPa
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Ballute-Assisted Supersonic Retropropulsion

9.3 m ballute minimizes decelerations
mass (50% less decel mass)

1600 . \

Required Deceleration Mass, kg
o]
o]
]

—Total
—Propellant
—Ballute System

0
0 / 5
Ballute Diameter, m

4.5 m ballute provides
25% less deceleration
mass

10 15

Calculated deceleration
mass as a function of
ballute diameter.

Inputs:

— 9 metric ton entry mass,
single stage entry, 4 m
diameter aeroshell

— Low L/D (0.24)

— No parachute, fully
propulsive descent

— Ballute is deployed at
Mach 3.5
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Technology Development

 Heating
— Drives deployment Mach number

— Current deployment limits from conservative CFD + thermal
model

— Temperature measurements are needed to validate models

e Fabric Development
— Past ballutes have used lightweight high-temperature fabrics

— LDSD ballute used the lightest Kevlar fabric that was available
within schedule and budget constraints

— LDSD fabric had more than enough strength, but suffered from
low seam efficiencies due to the characteristics of the fabric

e Ballute Accomodation

— Mechanical configurations should be studied to determine how to
package a ballute and parachute into the aft of the aeroshell
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Summary

Ballutes have a lengthy history of providing drag and
stablility at supersonic conditions

LDSD ballute was flown twice successfully

— 4.4 m diameter was particularly large for the parachute
deployment

Ballutes can offer mass savings when used as a
parachute deployment device

Ballutes can also be used as supersonic decelerators
— Prior to parachute deployment
— Prior to retropropulsion
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