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Cassini Background

• Cassini-Huygens was launched in October 1997 and 
arrived at Saturn on July 1, 2004

• Cassini’s primary mission was competed in 2008, but 
has been extended twice
– The first mission extension allowed for observations during the 

equinox season (completed in 2010)
– The second mission extension allowed for observations during 

the summer solstice in the northern hemisphere, F-Ring Proximal 
Orbits (FRPO), and disposal of the spacecraft (Complete 2017)

• The FRPO and disposal of the spacecraft are often referred to as 
the Grand Finale
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FRPO Orbit Definitions

• FRPO is currently scheduled to begin in late 2016
• FRPO consists of 20 orbits just outside of Saturn’s F-Ring followed 

by 22 orbits between Saturn’s innermost ring and Saturn’s cloud 
tops

• The Cassini spacecraft will complete a series of complex rotations 
and maneuvers to allow all instruments on board to make various 
observations of Saturn and Saturn’s rings

Artist Concept
Photo credit: NASA/JPL
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Cassini Spacecraft Overview

• The Cassini spacecraft 
supports 12 individual 
instruments, not including 
the Huygens probe

• The Visual and Infrared 
Mapping Spectrometer 
(VIMS) consists of two 
spectrometers, one each in 
the visible and infrared 
spectrums

• VIMS-IR, the infrared 
portion was built by JPL

Photo Credit: NASA/JPL 4
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VIMS-IR Passive Cooler

• The focal plane on VIMS-IR is cooled to its operational temperature 
range of ~60 K through the use of a passive cooler

• Since the focal plane is very sensitive to changes in temperature, 
temperature rises greater than 2 K were marked as programmatic 
consumables
– Only 40 were allowed for the entirety of the mission
– The time constant to return to nominal temperatures is on the order of 

hours to days
– Knowledge of fluxes external to the spacecraft is imperative to 

accurately plan for spacecraft maneuvers, such as the complex FRPO 
maneuvers
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Original VIMS-IR Thermal Model

• A thermal model including the VIMS passive cooler was generated 
prior to launch of Cassini in the mid-1990s

– This model consisted of three main external components: sunshield, top rim, and 
radiator patch

– FPA was not directly modeled, as temperature predictions are generated from 
the patch temperature and capacitance of FPA

• Historical FPA temperatures indicated the 
existing thermal model greatly 
underpredicted changes in FPA 
temperature when Saturn was in the 
view of the radiator

– This model only accounted for heat fluxes from 
the Sun and Saturn as little was known about 
Saturn’s rings

• Saturn was visited only 3 times before 
Cassini’s arrival, and all were fly-by 
missions

Voyager 2 
Photo credit: NASA/ 

JPL
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Saturn’s Rings – A New Heat Source

• Vast majority of knowledge about Saturn’s rings has been acquired 
during Cassini’s time at Saturn  

• During Cassini’s residence at Saturn, it was learned that although 
the rings are colder than Saturn, they are warmer than the steady 
state temperature of the radiator
– Since the FRPO orbits will bring the VIMS-IR radiator even closer to this 

“new” heat source, Saturn’s rings needed to be accounted for
– No commercially available thermal tools existed with Saturn’s rings as a 

source of external heating
– Spacedesign, the makers of TSS, agreed to incorporate heating from 

Saturn’s rings in their analysis package
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Model Correlation Results
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Orbit Definitions and Success Criteria

• Each fly-by is designated by a sequence number (S02 = Sequence 2)
• A series of seven historical cases were run to validate TSS and VIMS 

Light models against existing historical data
– SOI/S02 (Saturn Orbit Insertion)
– S05
– S07
– S26
– S42
– S54
– S60

• These orbits were chosen as they featured fairly large heating events 
(>1 K) and varied in their heating sources (solar, Saturn, Saturn ring, 
etc.)

• Success criteria was determined by temperature differences less than 5 
K between either the TSS or VIMS Light model and historical data 

• Two FRPO predictive cases were also run: S286 and S289
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TSS Modeling & VIMS Light

• FPA has two main states, active and sleep, so the internal power 
dissipation was adjusted accordingly

• TSS external fluxes were broken down into five individual contributions:
– Solar
– Saturn IR
– Saturn Albedo
– Saturn Ring IR
– Saturn Ring Albedo

• The TSS model was verified through a bottom-up approach, starting 
with verification of spacecraft pointing (S05 & S07) followed by the 
addition of Saturn heating (S54) and then followed by ring heating (SOI, 
S26, S42, etc.)

• A second tool, “VIMS Light”, was also developed in parallel with the 
TSS work

– This tool was to be used by orbital planners as a quick way to determine FPA 
temperature rises with various spacecraft maneuvers

– TSS thermal model used to validate final sequence temperatures
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Historical Results
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S05 TSS Heat Rate Sources

• S05 featured a 
single solar 
event, when the 
VIMS-IR radiator 
was pointed 
toward the sun
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S05 VIMS Light vs. TSS Model

• S05 underpredicts the 
historical data by 3K 
when adjusted for 
starting temperature

• VIMS Light does not 
decay as quickly as 
TSS because VIMS 
Light was run with the 
FPA in active mode for 
the entire sequence

• This is also true in S07 
(shown next), 
suggesting TSS 
consistently 
underpredicts solar 
heating
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S07 TSS Heat Rate Sources

• S07 was 
chosen due to 
the heating 
event being 
caused 
exclusively by 
solar loading

• This orbit 
allowed for 
verification of 
spacecraft 
pointing with a 
known source
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S07 VIMS Light vs. TSS Model

• VIMS Light and TSS 
model agree very well 
with respect to heat 
rate values, confirming 
correct pointing of the 
spacecraft

• TSS and VIMS Light 
differ from the historical 
data by ~3 K, 
suggesting the 
presence of an 
additional external 
heating source
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Modeling Differences May Cause Lower Solar Flux

• Both of the solar only sequences underpredict the FPA temperature 
and delta-T rise

– VIMS Light and TSS indicate the solar fluxes occur at the same time, thus 
suggesting correct pointing of the spacecraft

• Two possible causes of different solar loading:
– Potentially caused by oversimplification of the radiator surface in TSS/VIMS Light
– Both S05 and S07 were specialized orbits

• S05 included a Titan fly-by, which was not included in this thermal analysis
• S07 involved in the release of the Huygens probe, and spacecraft pointing files were 

reconstructed from this event

VIMS-IR Radiator 
Drawing (Left), VIMS-
IR TSS Thermal 
Model Radiator 
(Yellow, Right)
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S54 TSS Heat Rate Sources

• Next, S54 was 
investigated to 
confirm Saturn 
heating (no ring 
loading)

 

17



j p l . n a s a . g o v

S54 VIMS Light vs. TSS Model

• Sharp decline at 
beginning of sequence 
caused by the FPA going 
to sleep mode

• Both the TSS and VIMS 
Light models are in very 
good agreement with 
historical data, < 1 K 
difference

• VIMS Light model was 
offset due to the 
assumption the FPA is 
on at a constant heat 
load. TSS model 
accounted for on/off 
periods
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SOI TSS Heat Rate Sources

• SOI/S02 has 
loading from 
several sources, 
however does not 
have any solar 
loading

• This was the first 
case run with 
Saturn and 
Saturn ring heat 
rates

• TSS has difficulty 
with times prior to 
insertion (ecc >1 ) 
so TSS data is 
only shown post-
Saturn insertion
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SOI VIMS Light vs. TSS Model

• Both models again 
show excellent 
agreement with heat 
rate values, slight 
divergence in 
temperature after 
heating event

• Both models are within 
1 K of historical data

• Temperature rise in 
TSS prediction after 
external sources are 
removed is caused by 
FPA internal heating 
as it is in active mode

 

20



j p l . n a s a . g o v

S26 TSS Heat Rate Sources

• As seen in SOI/S02 
runs, S26 loading 
on the VIMS cooler 
was exclusively 
from Saturn and the 
rings, no solar 
loading observed

• Only historical case 
to have the largest 
heat flux component 
from Saturn’s rings

• Although the FPA 
was in “active” 
mode during the 
period of interest, a 
large number of 
spacecraft 
maneuvers during 
this orbit resulted in 
varied heat loads
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S26 VIMS Light vs. TSS Model

• Both TSS and VIMS Light 
show nearly identical 
profiles, with TSS slightly 
higher than VIMS Light

• Heat flux differences are 
less than 0.05 W/m2

• Temperature of both 
models agrees well with 
historical data, with both 
models within 0.5 K of 
historical temperatures
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S42 TSS Heat Rate Sources

• IR heating 
dominated S42, 
with the majority 
of heating coming 
from the rings, 
followed by 
Saturn

• No solar loading 
was observed 
during this orbit
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S42 VIMS Light vs. TSS Model

• As seen in S26, the heat 
rates for both the TSS 
and VIMS Light models 
are similar in shape, 
suggesting correct 
pointing of the spacecraft

• However, there is a 
difference between the 
two model heat rate 
outputs

• Temperatures for both 
models agree with 
historical data to within 
1 K
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S60 TSS Heat Rate Sources

• S60 combines 
solar heating 
with Saturn 
heating and 
minimal 
heating from 
the rings

• Three separate 
heating events 
observed as 
Cassini rotated 
during the fly-
by
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S60 VIMS Light vs. TSS Model

• TSS and VIMS Light 
have similar heat rate 
profiles, however they 
differ in several areas, 
particularly during the 
solar heating event

– May be caused by 
differences in geometry

• Temperatures remain 
within 1 K for both 
models, suggesting no 
major impact by 
difference in heat rates
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Predictive FRPO Cases
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Predictive Proximal Orbits

• Both of the predictive cases (S286 and 
S289) are proximal sequences, where 
Cassini passes between the inner D-
ring and the planet atmosphere

• Since historical data is not yet 
available, it is imperative that VIMS 
Light and TSS are in good agreement 
for mission planning
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S286 TSS Heat Rate Sources

• S286 has a 
mixture of all 
heating 
sources, 
including 
Saturn, Saturn 
rings, and solar

• Most 
predominant 
heating comes 
directly from 
Saturn 
immediately 
before ring 
plane crossing

Crossing of 
Ring Plane
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S286 VIMS Light vs. TSS Model

• VIMS Light and TSS model agree very well with respect to heat rate 
values, confirming correct pointing of the spacecraft

• TSS and VIMS Light are well below 0.5 K of each other
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S289 TSS Heat Rate Sources

• In S289, heating 
is almost 
exclusively from 
Saturn, slight 
heating from 
Saturn rings

• Ring plane 
crossing occurs 
when Saturn ring 
IR and albedo fall 
to zero

• In this case, the 
radiator has a 
view of Saturn 
through the ring 
crossing

 

Crossing of 
Ring Plane
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S289 VIMS Light vs. TSS Model

• VIMS Light and TSS model agree very well with respect to heat rate 
values

• TSS and VIMS Light predict FPA temperatures well within 0.5 K of 
each other
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Conclusions

• Through the use of seven historical cases, TSS has been proven to 
accurately determine the heat flux impinged on the Cassini VIMS-IR 
radiator when exposed to solar, Saturn planetary and Saturn ring 
sources

• Largest uncertainty surrounds solar loading cases, which are likely 
caused by modeling simplifications or other external sources

• TSS predictions are within 2 K of historical results, suggesting good 
predictions for FRPO cases and future Saturn mission planning
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