
UUU:
Using Unix Utterances

Anastassios E. Petropoulos
Jet Propulsion Laboratory

California Institute of Technology

26 June 2013
Including minor updates through 20 June 2016 (it)

c© 2016, California Institute of Technology. Government sponsorship acknowledged.



Purpose of this presentation

Unix’s seemingly magical incantations can simplify and speed up
your workflow. And many features of the work environment can
also be exploited. This presentation will expose many of these
from within the swirling mystical mists of unix. A companion
document provides a more comprehensive, narrative-based
explanation for many of the things presented here.

Working in the shell (a command line interface to the unix OS)
will be the main focus, and some work-environment topics will be
covered.

2 / 47



A command-line interface?

Whatever happened to

“A picture is worth a thousand words”

3 / 47



No one asks,“What is the worth of one thousand words?”!

Let’s take a stab:

I Conservatively assume 99% of the words are fluff or otherwise
irrelevant.

I We are left with 10 words. How many combinations?

10! = 3628800

� number of pixels on my screen, 1440x900

I Easier to type 10 words than to hunt for a pixel on my screen

I Let’s enjoy the fruits of the command line!

4 / 47



How does the shell interpret commands?
In this order:

I is it an alias?
I is it a shell built-in command?
I is it a full pathname or a relative pathname?
I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.

5 / 47



How does the shell interpret commands?
In this order:

I is it an alias?

I is it a shell built-in command?
I is it a full pathname or a relative pathname?
I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.

6 / 47



How does the shell interpret commands?
In this order:

I is it an alias?
I is it a shell built-in command?

I is it a full pathname or a relative pathname?
I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.

7 / 47



How does the shell interpret commands?
In this order:

I is it an alias?
I is it a shell built-in command?
I is it a full pathname or a relative pathname?

I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.

8 / 47



How does the shell interpret commands?
In this order:

I is it an alias?
I is it a shell built-in command?
I is it a full pathname or a relative pathname?
I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.

9 / 47



How does the shell interpret commands?
In this order:

I is it an alias?
I is it a shell built-in command?
I is it a full pathname or a relative pathname?
I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.

10 / 47



How does the shell interpret commands?
In this order:

I is it an alias?
I is it a shell built-in command?
I is it a full pathname or a relative pathname?
I is it in your PATH

Useful commands to see the shell’s interpretation of a command:

which <command>

where <command>

Examples (% is my unix shell prompt):

% which ls

ls: aliased to ls --color=tty

% where ls

ls: aliased to ls --color=tty

/bin/ls

% which where which

where: shell built-in command.

which: shell built-in command.
11 / 47



Shells and shell resource files

In your home directory, e.g., /home/user1:
.profile for sh

or .cshrc for csh, or, if .tcshrc doesn’t exist, for tcsh
or .tcshrc for tcsh
or .bashrc for bash [may read other files too, see man page]

.login also sourced on some systems at “login”.

NOTE:
If your shell resource files print info to the screen, this will cause
some failures when the shell is invoked in some cases e.g. by sftp.

12 / 47



Some important/useful environment variables

PATH directories where shell should look for executables, e.g.

setenv PATH newdir1:${PATH}:newdir2 (tcsh)
setenv PATH newdir1:$PATH\:newdir2 (tcsh)
setenv PATH newdir1:"$PATH":newdir2 (tcsh)
export PATH=newdir1:$PATH:newdir2 (bash, : not sepcial)

LD LIBRARY PATH (linux), DYLD LIBRARY PATH (mac)
directories to search for dynamically loaded libraries (”shared
object files”, .so suffix customary — like .dll files in Windows)

MANPATH directories where man (i.e. manual) pages are searched for

EDITOR command to use when a program must invoke an editor, e.g.
setenv EDITOR "/usr/bin/emacs -nw"

PAGER command to use when a program must use a pager, e.g.
setenv PAGER "/usr/bin/less -I"

13 / 47



Environment variables and shell escapes

Use caution when your process (e.g. MATLAB) executes shell
escapes:

The shell resource files are sourced upon the shell escape,
which can lead to your environment being different than
what it was before the invoking process was started.
This has been the source of many problems (even for
people who know about it but overlooked it), especially
with the PATH and LD LIBRARY PATH

14 / 47



The only three things illegal for filenames

/ cannot be part of the filename. The ‘slash’ character is for
demarcating directories in fully qualified filenames.

. this filename is reserved. The ‘dot’ means the present working
directory (as per pwd).

.. this filename is also reserved. The ‘double dot’ means the
parent directory to the present working directory.

There is probably also a [large] limit on the length of a filename.

15 / 47



The only three things illegal for filenames

/ cannot be part of the filename. The ‘slash’ character is for
demarcating directories in fully qualified filenames.

. this filename is reserved. The ‘dot’ means the present working
directory (as per pwd).

.. this filename is also reserved. The ‘double dot’ means the
parent directory to the present working directory.

There is probably also a [large] limit on the length of a filename.

16 / 47



Characters with special meaning to the shell

T-shell:

[space] \ ‘ ’ " ! $ & * ? ∼ - = ; ( ) [ ] { } | < >

Other shells have largely the same set of special characters.

17 / 47



Our first existential commands

whoami print your username. (“print” means to the terminal window,
normally.)

who print list of who is logged on and more. -a option gives a lot
more.

uname print the OS name. -a option additionally prints the machine
hardware name, the nodename, the OS release, and the OS
version.

setenv print all the environment variables [and their values] (tcsh).

set print shell variables (tcsh), or all variables (bash).

env print all the environment variables (tcsh and bash).
Executable, not shell built-in. Can use env to set environment
variables too, and it’s shell-independent.

18 / 47



Customising the [T-] shell

I The prompt. Put this in your rc file:
set prompt = "(%n@%B%m%b)%/\
%BYes? >%b "

See the man page for details. This yields the two-line prompt:
(user@node15)/tmp/user/adir
Yes? >

I autologout shell variable

I rmstar shell variable

I bindkey shell-built-in command used to change key bindings.
See also xmodmap for xterm windows. Often useful with
remote logins which can mess-up the meanings of special keys
(Esc, delete, meta, etc).

alias Command aliases are powerful and can be quite involved, e.g.
% alias xr "xterm -T \!:1@\!:2 -n \!:1@\!:2 -e ssh -l \!:1 \!:2 &"

% # note the \, it escapes the ! which is special

% xr user cmptr # example of using the alias

% # expands to:

% # xterm -T user@cmptr -n user@cmptr -e ssh -l user cmptr &

I And many more...
19 / 47



Getting help

man command to invoke or search man (manual) pages, e.g.
man man

man ls

man -k postscript

info some commands, typically GNU ones, unfortunately have only
a rudimentary man page, pointing you instead to a ’Texinfo’
manual to be read with ’info’, e.g.

info tar

-help or --help are often “helpful” options; e.g. a2ps --help or
acroread -help.

Users other users may have answers!

google this is one of the last resorts. Unknown relevance to our
setup. Look-and-feel of pages is all over the map — makes it
harder to stick in your head.

20 / 47



Basic commands

pwd

Print out the present working directory (i.e. the directory in which
“you are” right now).

ls [ -ltrRda1 ] [ file1 [ file2 ... ] ]

List the contents of the pwd or given files/dirs. Common options:
-l give a long (detailed) listing

-t sort the filenames by timestamp, not alphabetically

-r list in reverse sort order

-R recursively descend into subdirectories and list contents

-d if a dir is on the command line, list it, not its contents

-a list all files, incl ., .., & all names starting with a.

-1 list one file per line

cd [ dirname ]

Change directory. Without the argument, you are sent to your
home directory. Special names:
∼ home directory (also in other contexts, like ls)

- The previous directory

21 / 47



Basic commands, cont’d

pushd [ dirname ]

popd

dirs -v

Manage and work with a stack of directory names, e.g.
% cd; pushd /tmp; pushd /scratch0

% dirs -v

0 /scratch0

1 /tmp

2 ∼
% cp -p -r =2/Bin =1/TestBin

mkdir [ -p ] dir1 [ dir2 ... ]

Make one or more new directories.
% mkdir -p dir1/subdir/subsubdir

-p makes parent subdirectories as needed.
file arg1 arg2

Determine file “type” (ASCII text, binary data, PNG, PDF,
executable, directory, etc). Provides many details. man file.

22 / 47



Basic commands, cont’d

cp [ -p -r ] file1 file2 [ file3 [ file4 ...] dir1 ]

Copy one file to another, or many files into a directory.
-p preserve timestamps, etc., as far as possible

-r recursively copy subdirectories

-i interactively ask for confirmation if target file exists

mv [ -i ] file1 file2 [ file3 [ file4 ...] dir1 ]

Move one file (or directory) to another (i.e. change name of a file
or directory), or move many files into a directory. If file1 and file2
are existing directories, then file1 becomes a subdirectory of file2.

rm [ -rf ] file1 [ file2 ... ]

Remove file, or directory with -r
-r recursive deletion, incl. subdirectories and contents

-f ‘‘force’’ quiet removal. See man page for details.

Note: Unix doesn’t mess around: it doesn’t ask for
confirmation. The fact that you hit enter is confirmation
enough. (Ok, without the -f, it will ask if the removal request
conflicts with pre-existing information, e.g. permissions.)

23 / 47



Basic commands, cont’d

cat [ file1 [ file2 ... ] ]

Print out the contents of the files to the screen (concatenate the
files in the order given); if no files are given, print to the screen the
standard input (more on this later). There are better ways to
examine the contents of long files, but the cat command is useful
for many little things.

echo string

Shell-built-in command. Shell-dependent honouring of backslash
escapes (e.g., see variable ’echo style’ in tcsh man page).

/bin/echo [-e] string

Executable. Honours backslash escapes if -e specified (linux, but
not BSD on Macs).
Print out the string, expanding variables, wildcards, etc.

24 / 47



Standard output (stdout) and standard error (stderr)
Both of these normally appear on the screen. They can be
redirected (<, >) or piped (|). � means append

tcsh: Somewhat limited capabilities:
% man -k postscript > stdout file # stderr still to screen

% man -k postscript >& stdout and stderr file

% (man -k postscript > stdout file) >& stderr file # subshell

sh: More flexible:
$ man -k postscript 1> stdout file 2> stderr file

$ man -k postscript 2>&1 # stderr is sent to stdout

$ man -k postscript 2>&- # stderr is closed (discarded)

See the man page of your shell for details, including other
interesting options and combinations, especially for sh.

/dev/null is the ‘black hole’ file; output sent to it simply “ceases
to exist”

tee tee-off the stdout to screen and file: ls | tee flist
25 / 47



Standard Input

Various ways of doing the same thing:
1) % man -k postscript > man output

% less man output

2) % less < man output

3) % cat man output | less

4) % cat < man output | less

5) % man -k postscript | less

26 / 47



Command line editing
Applicable to shells, emacs, matlab and more.

C-p : Control-p, often written ^p

M-p : Meta-p, or apple-p, or escape-p, etc.

MOTION and HISTORY:

C-p bring Previous command onto the command line

C-n bring Next command onto the command line (commands are on a stack)

C-f Move forward a character

C-b Move backward a character

C-a Move to beginning of line

C-e Move to end of line

M-f Move forward a word

M-b Move backward a word

COMMAND and FILENAME COMPLETION:

C-d at end of line, will list out completions (w/o losing your typing)

[Tab] will complete command/filename as far forward from cursor as

possible; it will beep if there is no unique completion.

27 / 47



Command line editing, cont’d

EDITING:

C-d delete the next character after the cursor

[CAUTION! will log you out if command line is empty]

C-h delete the character before the cursor

C-k kill from the cursor position to end of line

C-u kill the entire command line (to left and right of cursor)

M-[bckspce] kill the word immediately before the cursor

M-d kill the next word after the cursor

C-y yank killed text (insert it at cursor pos).

C-[space] mark the current position on the command line

C-x C-x exchange point (i.e. cursor) and mark. (Put cursor at mark)

M-u up-case the [remaining] word to the right of the cursor

M-l lower-case the [remaining] word to the right of the cursor

M-c capitalise the [remaining] word to the right of the cursor

28 / 47



Filesystem commands

chmod
change the permissions (mode) of files, e.g.

% chmod 755 dir1 # user: rwx, group: rx, other: rx

% chmod uo-rx dir1 # strip rx from group and other

% chmod -R 755 dir1 # recursive, limited use - affects files too

ln
Create soft or hard links, essentially pointers to an original file, e.g.:

% ln -s originalfile linkname # soft link

find
Find files meeting various criteria. See man page, e.g.:

% find . -iname lib\*.so

% # looks in pwd recursively for files named lib*.so, case insensitive

29 / 47



Filesystem commands, cont’d (find)

% find Reports Rsrch/Papers \( \( \! -type d -name \*.ps \) -o \

\( -size +1000000c -mtime -365 \) \) -exec ls -l \{\} \;

looks in the directories Reports and Rsrch/Papers of the present
working directory for files that

I (are not directories (! -type d) and

I which end in .ps (-name \*.ps ) ) or (-o)

I (have a size greater than 1000000 bytes (-size +1000000c)
and

I were last modified less than 365 days ago (-mtime -365) )

and it executes the command ls -l on each of the found files
(-exec ls -l \{\} \;).

30 / 47



Shell wildcards, list expansions, and backtics

* matches ’zero or more characters’

? matches any one character

[0-5] matches any of the digits 0-5

[^0-5] matches any character not in 0-5

[a-fv-z] matches any of the letters a-f or v-z

[-042] matches any of -,0,4,2

{a,b,cc,ddd} expands to those four strings

EXAMPLE:

% ls -d /home/s{a*,br*,tar}

/home/sauser1 /home/sauser3 /home/sbruser1

/home/sauser2 /home/sauser4 /home/star

Backtics:

% set myname=‘whoami‘

# executes the command ‘‘whoami’’, its stdout then takes the

# place of the backtic expression, and the thus-formed

# command line is executed

31 / 47



Editing and viewing files (editors and pagers)
Executable commands:

emacs Powerful editor, lisp-based, mouse or no-mouse, able to work
with rectangles (extremely useful for tables), efficient
keystrokes, advanced use of registers for saving text and
marking points in the document, syntax highlighting, multiple
files open simultaneously, multiple sub-windows, etc.

vi :!q, although many people do still use it.
kedit

gedit Not sure what the strengths of these editors are. Perhaps
their point-and-click, menu-driven nature.

less The one pager to rule them all. Its slogan, ”type less
accomplish more”. Full regexp searches, easy to use, matches
are highlighted, easy navigation, left-right scroll for wide files,
etc.

more A lighter-weight pager, not as capable as less.
pr Has some nice features for ascii formating (’printer ready’)

a2ps Powerful converter of ascii files into prettied-up PostScript
versions.

32 / 47



Job control
See companion document, but note especially the following:

& Put the ampersand after your command, it will make the job
run in the background, giving you back your prompt.

nohup Precede your command with this so it won’t ”hangup” when
the shell exits. It is often not needed if you use the &.

nice Be nice, prefix the nice command to your heavy jobs. The
greater the niceness, the lower priority your job has; this
makes interactive users happy. e.g.:

% /bin/nice # there’s a tcsh built-in that behaves differently

4 # lists current niceness. Non-superuser range: 4-19.

% /bin/nice -n 12 heavyjob

# runs ’heavyjob’ at a niceness incremented by 12 (to 16)

renice alter priority of running processes

ionice get/set niceness wrt i/o functions

ps list processes, e.g.

% ps -ef # full listing of every process (all users)

% ps -f -u user # listing of jobs owned by user ‘user’

33 / 47



Job control, cont’d

top continually updated list of “top” jobs (various criteria
available to sort)

kill kill or send other signal to a job, given its process ID:

% kill <PID> # should work

% kill -9 <PID> # -9 means force kill

% kill -9 %2 # specify process using its JOB-ID (e.g. 2)

history list the history of commands you’ve issued

!! re-execute the last command

!c re-execute the last command starting with ‘c’

!125 re-execute the command number 125 from the command
history

34 / 47



Job control, cont’d

^Z means push down the ’Control’ key, hit ’z’ (or ’Z’, your choice),
release ’Control’ key.

jobs (usually, shell built-in) list of jobs that were started from the
current terminal (window/interactive shell). Includes status,
usually Running or Suspended.

^Z SUSPEND the job that is currently running in the foreground,
and give you back your prompt. E.g. your viewing of a man
page in the terminal itself, or your editing a file in an emacs
window. The ^Z is typed in the terminal. In the case of
another window, like emacs, anything you type in that other
window WILL BE processed, but only when the job is
returned to a Running status.

35 / 47



Job control, cont’d

bg [%n] put job in the background, either the most recently suspended
one, or the one with job ID indicated by the integer n. This
tries to start the job running again, this time in the
background (so that you have your command prompt again).

fg [%n] put job in the foreground, either the most recently suspended
one, or the one with job ID indicated by the integer n. This
tries to start the job running again, but in the foreground,
meaning that you lose access to the command prompt.

^C INTERRUPT the job that is currently in the foreground. Job
will terminate (usually).

^S suspend screen activity in the terminal — subsequent
keyboard input or program output are buffered and do not
appear on screen.

^Q resume screen activity in the terminal — any buffered data is
now printed to the screen; buffered kbd input is executed.

36 / 47



Job control, cont’d
Example, tcsh

% man tcsh

^Z # you type this, mightn’t appear on screen

Suspended # screen output

% emacs file1 &

[2] 5518 # screen output, 2 is Job ID, 5518 is Process ID

% emacs file2

^Z

Suspended

% bg # puts ’emacs file2’ job running in background

% jobs

[1] + Suspended man tcsh

[2] - Running emacs file1

[3] Running emacs file2

% fg %3

emacs file2

^C # you type, it interrupts the ’emacs file2’ job

% fg %1 # resume viewing the man page

37 / 47



Job control, cont’d

cron Set up jobs to be run automatically at set intervals or times

pgrep list processes based on name and other attributes, e.g.

% pgrep -l -u user -f ’emacs .*[.]m$’

# long listing of user’s emacs jobs invoked w/ argument ending

# in .m (note, pattern is a regular expression)

pkill like pgrep but kills or send other signal to the matching PIDs

Command-line script waits for a job to finish, then starts another:

# tcsh | # sh

|

% while 1 | $ while [ 1 ]

while? if ! -e /proc/4567 bigjob.x | > do

while? if ! -e /proc/4567 break | > if [ ! -e /proc/4567 ]

while? sleep 10 | > then

while? end | > bigjob.x

| > break

| > fi

| > sleep 10

| > done

|

# multi-line ifs seem impossible at | # One-line if statement possible:

# the command line | if [ ! -e /proc/4567 ] ; then bigjob.x; break; fi

|

38 / 47



Secure shell (ssh) to remote login, scp, sftp

All of these will ask you for your password, unless you set up your
public and private keys (coming up)

% ssh -X user@cmptr # -X allows you to open windows

% ssh -Y -l user cmptr # -Y for macs-->linux

% ssh user@cmptr ps # log in to cmptr, run the ps command, return

% scp -p -r dir1 cmptr: # recursively copy dir1 to my cmptr home dir

% scp -p -r dir1 node5:/scratch0 # to node5’s /scratch0

% scp -p user1@node6:/scratch0/file1 user2@node5:

% sftp <machine> # secure file transfer protocol session to machine

39 / 47



Passwordless login with ssh (1)

1. Generate RSA public key of 4096 bits

% ssh-keygen -b 4096 -t rsa

Do not enter a passphrase when prompted. It is more secure to use a

passphrase and connect using ssh-agent, but not strictly necessary.

However, always protect this key! With this key anyone can connect as

you without a password!

Recommendation is to change it at least once a year by deleting and

recreating it.

Recommendation is also to use different ssh keys for different

functions/systems. For example, generate a one public key for a

supercomputer and a different one for a cluster. The -f option will

generate the key file with whatever name you choose instead of the

default ~/.ssh/id_rsa.pub.

40 / 47



Passwordless login with ssh (2)

2. Make sure the public key is in the ~/.ssh/authorized_keys file on

the hosts you wish to connect to:

% cat ~/.ssh/id_rsa.pub|ssh you@remote ’cat - >>~/.ssh/authorized_keys’

When the home directory is shared as on clusters you can just do:

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

41 / 47



pdsh: Parallel distributed shell
and pdcp, rpdcp

Examples:

Run "ps" on nodes2-8 and node10

% pdsh -w ssh:"node[2-8,10]" ps

Copy myfile1 and myfile2 on localhost to /tmp on node2 and node5

% pdcp -w ssh:"node[2,5]" myfile1 myfile2 /tmp

[The specified nodes apply to LAST argument]

[Reverse] Copy /etc/hosts /etc/motd from node10-20,

excluding node11, to /tmp/ on localhost

(each node’s file will get its own name)

% rpdcp -w ssh:"node[10-20]" -x node11 /etc/hosts /etc/motd /tmp

Copied files will be named /tmp/hosts.nodename /tmp/motd.nodename

[The specified nodes apply to the INITIAL arguments]

Note that the pdsh commands use their own list syntax, these are

not in regular expression syntax. man pdsh.

42 / 47



Text manipulation tools
See the companion document for details on many of these commands:

sed ‘stream editor’ — edits the stdin, line by line, and prints it to stdout

awk another stream editor, less awkward in some things, more awkward
in others

perl easy to write mini-scripts at the command line

grep ‘get regular expression’, i.e. searches for strings that match a
pattern. Includes egrep, fgrep

cut cut out specific fields from each input line

paste ’stack’ files one next to the other (across the page, line by line)

head print top part of a file

tail print bottom part of a file

sort sort input lines; complex keys permitted; secondary, tertiary, etc sort
keys

uniq strip out duplicate lines

43 / 47



Regular Expressions
Unfortunately there’s a proliferation of RE syntaxes amongst the commands
that parse REs. But there’s fair overlap. One source: man -s regex

These are probably universal:

? The preceding item is optional and matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.

{n,m} The preceding item is matched at least n times, but not more

than m times.

\ Quote the next metacharacter

^ Match the beginning of the line

. Match any character (except newline)

$ Match the end of the line (or before newline at the end)

| Alternation

() Grouping

[] Character class

/// Note difference from shell wildcards ///

Character sets/classes (less overlap here):

[0-9]

[:alpha:]

\w (word characters, i.e. alpha and _)

etc.
44 / 47



Printing to a printer

% echo hello there | lp -d pedro

% lp -d pedro asciifile

# these will print using a default fixed width font and margins

% lp -d pedro file.ps

% gunzip -c -file.ps.gz | lp -d pedro

# these will print the [interpreted] PostScript file (it will

not print the PostScript source code)

# recall a2ps for creating postscript out of ascii

% lpoptions -p pedro -l

# see what printer options are set for pedro (long listing)

% lpoptions -p pedro -o Duplex=DuplexNoTumble

# set pedro to print in duplex from this shell

% cancel -u user

# cancel all of user’s print jobs (super user or user)

45 / 47



‘Office’ tools

finger Directory, e.g. finger user@jpl,
finger longuski@directory.purdue.edu

latex The one and only. tex is there too, for the hardier/nuttier of us.

soffice OpenOffice.org’s version of Microsoft Office tools.

firefox Popular web browser.

lynx Text-based browser that works in your terminal.

xv Simple image viewer and editor.

ImageMagick Not a command per se, but an image-editing suite. man ImageMagick.

okular, evince, ghostview, gs PDF viewers; Adobe Acrobat Reader
(acroread) no longer supported on linux.

pdf2ps, ps2pdf, psselect conversion and page-extraction tools.

mutt Powerful mail program, good in batch mode, e.g.
% echo hi folks | mutt -s "the files you wanted" -a file1 -a f2.ps\
-c user1cc@jpl user2@jpl user3@jpl

46 / 47



For next time and miscellaneous commands

tar, gzip, gunzip, @ (tcsh), wc, dc, bc, ldd, nm,

rsync, screen, basename, dirname, touch, xargs,

passwd, chsh, pbcopy (mac), pbpaste (mac), dos2unix,

unix2dos

Scripting

Emacs macros

Desktop environments and window managers

47 / 47


