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Spinning Dust Physics

e AME can be explained by
spinning dust grains
(Draine & Lazarian
1998ab)

e Very small grains (e.g.
PAHs) can get spun up by
gas collisions, radiative
torques, and other
processes

e If grains have a dipole
moment, this rotation
causes them to radiate

Credit: Yacine Ali-Haimoud
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PAHs

e Attractive
AME carrier 3 —
Ingalls et al 2011 |
because they ]
are small and WISE 3 Bandpass |
ubiquitous L |

e Abundance
traced by IR
emission
features at 8
and 12 ym
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Spinning Dust Emissivity

Galactic spinning dust emissivity
Jv. 30 GHz/NH = 3 x 1078 Jy cm? sr =" H™!

Emissivity per PAH fairly robust to environmental conditions, so
assume a linear scaling with Xpay

2 pAn _
/lél\g[g GHz — 10 (A/Ikpc_z Jy ST 1
©




Planck AME
©0000000

Full-Sky Test of the Spinning PAH Hypothesis

Full-sky maps of the AME derived from component separation
of the microwave sky by Planck let us test the AME-PAH
connection in detail.
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PAH Destruction
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Model Predictions

© Linear correlation with 7353
® Even tighter correlation with fpap73s3
©® No strong correlation with radiation field
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Correlation with 7353
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Model Predictions

v Linear correlation with 7353
2 Even tighter correlation with fpap73s3
3 No strong correlation with radiation field
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Model Predictions

v Linear correlation with 7353
X Even tighter correlation with fpap73s3
3 No strong correlation with radiation field



Planck AME
©00000

Correlation with R
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Model Predictions

v Linear correlation with 7353
X Even tighter correlation with fpap73s3
X No strong correlation with radiation field
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A Further Test

e Does PAH abundance explain fluctuations in AME/R?
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Correlation with fpagR

o fpag does NOT improve the correlation with R
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No Dependence on Galactic Latitude
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No Dependence on Environment
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Alternate Models

e What are our next-best theories?



Magnetic Nanoparticles

¢ Emissivity per unit
volume of 0.01m
grains heated to 18K

e Emissivity in mm
and sub-mm much
stronger than
amorphous silicate
grains
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Draine and Hensley 2013
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Some Problems...

e Not great at reproducing the shape of the SED

e Emission would likely be strongly polarized, in conflict with
observations

e Could still be part of the AME
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Spinning Non-PAHs

o Still spinning dust, just not PAHs — see Thiem’s talk

¢ Not clear whether including a sufficient number of
ultrasmall grains of a different type (e.g. silicates) would
violate other constraints (e.g. UV extinction)
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Spinning Non-PAHs

Preliminary!
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No Spinning PAH Emission?

¢ Invoking alternate explanation still requires asking why the
PAHs aren’t producing significant spinning dust emission

e Electric dipole moments overestimated?
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Conclusions

¢ No apparent link between AME and PAHSs, other carriers
and other mechanisms should be (re)considered

e New data is needed to better separate AME from other
emission
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