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Recent advances
in the Gaussian Process formulation
of GW searches on pulsar-timing data
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Marginalized likelihood: “Low” number of parameters. Computationally expensive.

Hierarchical likelihood: High number of parameters. Computationally cheap.

np ≈ 400

np ≈10000

on 9-yr set:

t ≈ 2sec

t ≈ 0.07sec
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Scaling of likelihood



Likelihood:
^3 in low-level parameters
^3 in pulsars
^1 in observations

Search parameters:
- Hyperparameters (~400)

Likelihood:
^1 in low-level parameters
^1 in pulsars (up to 1000s of pulsars)
^1 in observations

Search parameters:
- Hyperparameters (~400)
- Low-level parameters (~10000)
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MCMC:
- Nsteps ~ Npar^2

Total:
- Npar ~ Npsr
- Runtime ~ Npsr^5

MCMC:
- Nsteps ~ Npar^2

Total:
- Npar ~ Npsr
- Runtime ~ Npsr^3:      Can we do better?

Scaling of likelihood



Markov Chain Monte Carlo
Optimal acceptance ratio: 55% (2 dimensions), 24% (many dimensions)

Small steps:

Random walk:

ΔL ≈ Σ ∂L
∂θi

Δθ

NStep ∝Np
2



Instead of random walk, integrate along Hamiltonian trajectory to propose 
new state.

Sample auxiliary variables (momenta).

Set potential to log likelihood (will need gradients).

Random walk:

Hamiltonian Monte Carlo

NStep ∝Np
5/4



Previous work went some way…
A hyper–e�cient model–independent bayesian method for the analysis of pulsar

timing data.
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A new model–independent method is presented for the analysis of pulsar timing data and the
estimation of the spectral properties of an isotropic gravitational wave background (GWB). Taking
a Bayesian approach, we show that by rephrasing the likelihood we are able to eliminate the most
costly aspects of computation normally associated with this type of data analysis. When applied
to the IPTA Mock Data Challenge datasets this results in speedups of approximately two to three
orders of magnitude compared to established methods, in the most extreme cases reducing the run
time from several hours on the high performance computer ’DARWIN’ to less than a minute on a
normal work station. Due to the versatility of this approach we present three applications of the
new likelihood. In the low signal–to–noise regime we sample directly from the power spectrum
coe�cients of the GWB signal realisation. In the high signal–to–noise regime, where the data can
support a large number of coe�cients, we sample from the joint probability density of the power
spectrum coe�cients for the individual pulsars and the GWB signal realisation using a ‘Guided
Hamiltonian Sampler’ to sample e�ciently from this high dimensional (⇠ 1000) space. Critically in
both these cases we need make no assumptions about the form of the power spectrum of the GWB,
or the individual pulsars. Finally where one wishes however, we show a power-law model can still
be fitted at the point of sampling. We then apply this method to a more complex dataset designed
to represent better a future IPTA or EPTA data release. We show that even in challenging cases
where the data features large jumps of the order 5 years, with observations spanning between 4 and
18 years for di↵erent pulsars and including steep red noise processes we are able to parameterise
the underlying GWB signal correctly. Finally we present a method for characterising the spatial
correlation between pulsars on the sky, making no assumptions about the form of that correlation,
therefore providing the only truly general Bayesian method of confirming a GWB detection from
pulsar timing data.

I. INTRODUCTION

Millisecond pulsars (MSPs) have for some time been
known to exhibit exceptional rotational stability, with
decade long observations providing timing measurements
with accuracies similar to atomic clocks (e.g. [23, 29]).
Such stability lends itself well to the pursuit of a wide
range of scientific goals, e.g. observations of the pulsar
PSR B1913+16 showed a loss of energy at a rate con-
sistent with that predicted for gravitational waves [39],
whilst the double pulsar system PSR J0737-3039A/B has
provided precise measurements of several ‘post Keple-
rian’ parameters allowing for additional stringent tests
of general relativity [27].

⇤ ltl21@cam.ac.uk

By measuring the arrival times (TOAs) of the radio
pulses to high precision it is possible to construct a timing
model: a deterministic model that describes the physical
properties of the pulsar e.g. its binary period and spin
evolution, its trajectory, post-Keplerian terms and so on.
A detailed description of this process is available in the
Tempo2 series of papers [8, 17, 18]. The timing model
can then be subtracted from the TOAs resulting in a set
of residuals that contain within them any physical e↵ects
not correctly accounted for by the timing model.

In this paper we will be concerned with extracting in-
formation from these residuals that results from time-
correlated stochastic signals. These can include addi-
tional red noise terms due to rotational irregularities in
the neutron star [37] or correlated noise between the pul-
sars due to a stochastic gravitational wave background
(GWB) generated by, for example, coalescing black holes
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Low-rank approximations for large stationary covariance

matrices, as used in the Bayesian and

generalized-least-squares analysis of pulsar-timing data
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ABSTRACT
Many data-analysis problems involve large dense matrices that describe the co-

variance of wide-sense stationary noise processes; the computational cost of in-

verting these matrices, or equivalently of solving linear systems that contain

them, is often a practical limit for the analysis. We describe two general, prac-

tical, and accurate methods to approximate stationary covariance matrices as

low-rank matrix products featuring carefully chosen spectral components. These

methods can be used to greatly accelerate data-analysis methods in many con-

texts, such as the Bayesian and generalized-least-squares analysis of pulsar-

timing residuals.

Key words: matrices: rank reduction – methods: data analysis – gravitational

waves – pulsar timing

1 INTRODUCTION

For various applications in the mathematical theory of
Gaussian processes, in the field of machine learning, and
(for these authors especially) in the data analysis of tim-
ing residuals from pulsars, one needs to take a matrix
inverse of the form (N +K)�1, where N is a very large
diagonal matrix and K is a very large dense matrix ob-
tained by evaluating a wide-sense stationary correlation
function k at a set of observation times ti:

Kij = k(ti, tj) = C(ti � tj) = C(⌧). (1)

In the case of pulsar timing, the diagonal of the matrix
N would contain the measurement errors for the times
of arrival of the pulses, and C(⌧) would describe cor-
related timing noise with a power-law spectrum S(f),
which is present in many pulsar-timing datasets (Shan-
non & Cordes 2010); by way of the Wiener–Khinchin the-
orem,

C(⌧) =

Z 1

0

df S(f) cos(2⇡f⌧). (2)

In the Bayesian analysis of pulsar-timing residuals (the
times of arrival minus their theoretical model; see van
Haasteren et al. 2009; Arzoumanian et al. 2014; van
Haasteren & Vallisneri 2014, and references therein) the
inverse (N+K)�1 is required to evaluate the likelihood of
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the data against a Gaussian-process model of its noise-
like components (van Haasteren & Vallisneri 2014); in
the generalized–least-squares analysis of residuals (Coles
et al. 2011), the inverse enters the normal equations of
the least-squares problem.

Taking the inverse of an n ⇥ n matrix is an O(n3)
operation, which becomes forbidding for large n. A pop-
ular technique to speed up the inverse is to approximate
the dense matrix K as a low-rank product F�FT , where
F is n⇥m (with m ⌧ n) and � is diagonal (and m⇥m).
The Woodbury matrix identity (Hager 1989) then yields

(N +K)�1 ' (N + F�FT )�1

' N�1 �N�1F (��1 + FTN�1F )�1FTN�1,
(3)

where the dominant cost is the O(m3) inversion of
��1 +FTN�1F . The generalized least-squares approach
(Coles et al. 2011) uses a Cholesky decomposition (Tre-
fethen & Bau 1997) of (N + K), which can also be
obtained e�ciently as a low-rank update (Goldfarb &
Scheinberg 2004, 2005; Smola & Vishwanathan 2004).
The problem then is to obtain an adequate approxima-
tion in the form F�FT . A straightforward solution would
be the truncated singular-value decomposition (Trefethen
& Bau 1997), which however is itself an O(n3) operation.
Various other approximations have been discussed in
the machine-learning literature (Rasmussen & Williams
2006). This paper discusses the limitations of the popular
“Fourier-sum” prescription used in pulsar timing (Sec.
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Unfortunately, Neal’s funnels kill us

variance

co
ef

fic
ie

nt



Our solution: develop ad hoc
coordinate transformations

Stingray transform Interval transform
• The Stingray transform scales as Nb^3, per pulsar.

• To use HMC, transforms need to be propagated across 
parameter gradients (and ideally the Hessian)

• The Stingray transform involves a Cholesky
decomposition. We developed a custom algorithm to 
compute the Cholesky derivative.



It works!



In conclusion
• Hierarchical likelihood scales with Npsr (not Npsr^3)
• Hamiltonian Monte Carlo scales as Npar^(5/4) (not Npar^2)
• Total: Npsr^(9/4) instead of Npsr^5

• Fully working No-U-Turn-Sampler running on PTA datasets
• Requires ad hoc coordinate transformations:

Regular pars > Stingray pars > Interval pars > Whitened pars

• Some NANOGrav timings (9-yr set: 37 psrs, 30 frequencies)
Hierarchical (mar jit): 88 ms 5173 dim
Transformed (mar jit): 238 ms 5173 dim
Marginalized (mar jit): 1670 ms 505 dim

• Still working on loss of efficiency when including GWB


