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Motivation
• Spectral modeling of red noise. 

Power-law = 2 parameters. Free 
spectrum > 30 parameters. Which 
is “better”?  

• Would like a way to use free 
parameters where they are 
needed. 

• Some pulsars show transient 
noise events. How do we model 
them? 

• Would like a way to model them 
without a-priori choosing number 
of basis functions.
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FIG. 3: Results of BayesSpecPTA and the two standard anal-
yses (powerlaw and free spectral coe�cients) on the null case.
The top two panels show the recovered spectrum (middle
panel) and the favored control points for the spectral inter-
polation (top panel), respectively. The bottom panel is the
recovered spectrum from the powerlaw analysis (density) and
the free spectral coe�cients (error bars). In both density
plots, the dashed line is the injected PSD and the solid black
lines represent the median and 90% confidence region. In the
bottom panel, the gray error bars represent the median and
90% confidence interval on each spectral coe�cient.

2. Intermediate Case

For the intermediate case we have injected a realiza-
tion of a gaussian process that follows a broken power-law
distribution. In this case we see in Figure 5 that the spec-
trum is well recovered with the adaptive technique and
that the data strongly prefer an additional control point
at the turnover frequency in the spectrum. Furthermore,
we see from Figure 5 that, overall, the data prefers to
describe the spectrum by three parameters. This is ex-
actly the behavior that we wish to see in that the most
parsimonious model to describe a broken power-law con-
tains three parameters. Meanwhile, the bottom panels
of Figure 5 shows that the power-law noise model ex-
tremely overestimates the low frequency noise and the
free spectral model loosely models the power around the
turnover in the spectrum. This case really demonstrates
the power of the adaptive technique in which it correctly

FIG. 4: Favored number of spectral components from the
BayesSpecPTA analysis of the null case. In this case, where
the injected spectrum is a simple powerlaw, the spectrum is
best described by two parameters as one would expect.

identifies the most parsimonious model containing three
parameters while still incorporating the uncertainty asso-
ciated with more or less components, all while producing
an accurate reconstruction of the power spectral density.
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FIG. 5: Same as Fig. 3 but for the intermediate case.
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Figure 27. Timing summary for PSR B1855+09. Colors are: Blue: 1.4 GHz, Purple: 2.3 GHz, Green: 820 MHz, Orange: 430 MHz, Red: 327 MHz. In the top
panel, individual points are semi-transparent; darker regions arise from the overlap of many points.

NANOGRAV NINE-YEAR DATA SET 31

Figure 32. Timing summary for PSR J1923+2515. Colors are: Blue: 1.4 GHz, Purple: 2.3 GHz, Green: 820 MHz, Orange: 430 MHz, Red: 327 MHz. In the
top panel, individual points are semi-transparent; darker regions arise from the overlap of many points.
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Figure 33. Timing summary for PSR B1937+21. Colors are: Blue: 1.4 GHz, Purple: 2.3 GHz, Green: 820 MHz, Orange: 430 MHz, Red: 327 MHz. In the top
panel, individual points are semi-transparent; darker regions arise from the overlap of many points.
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Model
everyth

ing and let the data sort it out

Trans-dimensional Reversible Jump !
Markov Chain Monte Carlo

• Similar to standard MCMC but now the model is another 
parameter  

• Let the data pick the best model. 
• Marginalize over models and their parameters.

BayesWave: Cornish & Littenberg, CQG 32,  135012 (2015) 
BayesLine: Littenberg and Cornish, PRD 91, 084034 (2015) 	
BayesWavePTA: Ellis & Cornish, arXiv:1601.00650 [in press PRD] (2016)



Modeling
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Model Transient signals with sum of Morlet-Gabor Wavelets

 (t;A, f0, Q, t0,�0) = Ae�(t�t0)
2/⌧2

cos(2⇡f0(t� t0) + �0)

NwaveX

Model red spectrum with free control points and linear interpolation in log-space.



Transient Noise Event 
Simulation.

• B1855+09 TOAs with 
simulated white noise burst. 

• Test model with uniform SNR 
prior and log-uniform 
amplitude prior 

• Signal recovered well in both 
cases. 

• Model much simpler with 
uniform SNR prior.
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control points. When modeling both wavelets and con-
trol points simultaneously, we always hold one fixed and
jump in the other, that is, we never propose to add or
subtract wavelets and control points simultaneously. Of
course, more complicated and more e�cient proposals
could be made for both the wavelet and spectral models
and this will be addressed in the future; however, for this
work we find that these random uniform draws provide
quite adequate mixing.

B. Parallel Tempering

Although uniform trans-dimensional proposals pro-
vide adequate mixing, the trans-dimensional acceptance
rates are quite low (typically < 6% for the wavelet
model). This means that we have to run for many it-
erations in order to adequately explore the full trans-
dimensional model space. In order to ameliorate this
problem we use a parallel tempering method introduced
in [7] that allows di↵erent chains to be in di↵erent mod-
els, thus jumps between di↵erent temperature chains are
also trans-dimensional jumps. These parallel tempering
moves greatly enhance the inter- and intra-model mixing.
Currently we use a geometric temperature spacing that is
tuned to give ⇠ 40% acceptance for temperature swaps to
the coldest chain. In future versions of the code we will
incorporate a more sophisticated adaptive temperature
spacing as was introduced in [9].

VI. RESULTS

Here we test our non-stationary and adaptive noise
modeling techniques. In all cases we have used the time
stamps and timing model for PSR B1855+09 from the
NANOGrav 9-year data release [10] and inject white
gaussian noise consistent with the TOA uncertainties us-
ing libstempo2. We use this as the base data set because
it has all of the features of real pulsar timing data includ-
ing a large gap, heteroscedastic TOA uncertainties, a full
relativistic binary timing model, and time varying DM
variations. We then take this base data set and inject a
white noise burst, a realization of a gaussian process de-
scribed by some power spectral density, or both in order
to test our modeling techniques. We then compare the
results with those of standard noise analyses.

A. BayesWavePTA

Here we test our non-stationary noise modeling tech-
niques described in Section III. As mentioned above
we test this technique on a simulated dataset of pulsar

2
https://github.com/vallis/libstempo
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FIG. 1: Summary of RJMCMC results from the uniform SNR
prior run. In the top panels the daily-averaged residuals are
plotted in blue, the injected waveform in green, the MAP
waveform (chosen from the model with the highest Bayes fac-
tor) in red, and the 1-sigma uncertainty on the waveform
(marginalized over all models) in gray. The bottom left plot
we show the utility as a function of number of wavelets. In the
bottom right, we plot the histogram of the normalized resid-
uals (normalized by the TOA uncertainties) when including
(blue) and not including (red) the MAP wavelet model. The
green curve is a zero-mean unit variance Gaussian distribu-
tion.

B1855+09 that contains an injected white noise burst
with amplitude of 447 ns and a width of 250 days. We
have analyzed these data with the non-stationary model
using both a uniform SNR and a uniform log-amplitude
prior. In both cases we allow up to 30 wavelets with a
uniform prior on the number of wavelets. The results of
this analysis are shown in Figures 1 and 2.

where in the top panels we have the daily-averaged
residuals plotted in blue, the injected waveform in green,
the MAP waveform (chosen from the model with the
highest Bayes factor) in red, and the 1-sigma uncertainty
on the waveform (marginalized over all models) in gray.
The bottom left plot we show the utility as a function
of number of wavelets. Here utility is simply the ratio of
the number of iterations spent in a model with a given
number of wavelets to the total number of iterations in
the RJMCMC run. In the bottom right, we plot the his-
togram of the normalized residuals (normalized by the
TOA uncertainties) when including (blue) and not in-
cluding (red) the MAP wavelet model. The green curve
is a zero-mean unit variance Gaussian distribution.

First, we point out that although this “event” seems
quite large, it is quite comparable to a real event in the
published data of PSR B1855+09 [see e.g. Figure 27 of
10]. Next, we see that for both choices of amplitude prior
we recover the injected waveform very well and recover
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FIG. 2: Same as Figure 1 but for the log-uniform wavelet
amplitude RJMCMC run.

the Gaussian nature of the underlying white noise shown
in the bottom right panels. Most important, however,
is the number of wavelets that the data prefer under
the two di↵erent amplitude priors and how this e↵ects
the uncertainty in the recovered waveform. In the case
where we have used a uniform prior on the SNR of the
wavelet we see from the bottom left panel of Figure 1
that the data prefer 6 wavelets and can support up to 11
wavelets, albeit with a much lower utility (utility is pro-
portional to the Bayesian evidence). Furthermore we see
from the wavelet mode. uncertainty (marginalized over
all wavelet models) in gray in the top panel of the figure
that the wavelet model only contributes to modeling the
white noise burst and not any other features in the data.
(Should we have a plot showing this?)

Alternatively, for the log-uniform amplitude prior we
see that the data prefer ⇠ 18 wavelets but can support
> 30 resulting in very broad spread in the number of
wavelets that are allowed by the data. Furthermore,
we see from the waveform uncertainty at early times in
the reconstructed waveform (gray shaded area of the top
panel of Figure 2) that many wavelets are being placed
far away from the white noise burst. The fact that this
prior allows for many more wavelets that are e↵ectively
sitting below the white noise level can be understood by
the fact that there is quite a large prior volume at low am-
plitudes since a uniform prior in log10 A is proportional
to a prior on the amplitude of p(A) / A�1. In con-
trast, the uniform SNR prior is much more similar to a
uniform amplitude prior. Thus, a-priori the log-uniform
prior prefers low amplitude wavelets whereas the uniform
SNR prior prefers high amplitude wavelets.

As mentioned above we want to choose a prior on the
wavelet amplitude so that we use the minimum amount
of wavelets to model the signal. As we have seen from

this example a uniform SNR prior performs admirably
in this respect where a log-uniform amplitude prior fails
this test.

B. BayesSpecPTA

Here we will test the adaptive spectral modeling tech-
niques of Section IV on three cases that we call the null,
intermediate, and extreme cases. For each simulation we
will recover the spectrum using the adaptive technique,
a standard power-law, and free spectral components.

1. Null Case

For the null case, we inject a realization of a gaussian
process that follows a pure power-law distribution with
a power spectral index of 13/3 as one would expect from
a gravitationally wave driven isotropic stochastic back-
ground. We have dubbed this the null case since the
spectrum is fully described by two parameters and this is
the simplest model that the adaptive spectral modeling
technique can achieve. In Figure 3 we show the results
of our analysis on this null case. The middle panel shows
the posterior probability density of the recovered spec-
trum from our adaptive method. The solid black lines
are the 90% credible intervals and the median value. The
dashed line is the PSD of the injected noise process. The
top panel shows the utility of the various control points
as a function of frequency. Here we define the utility as
the ratio of the number of iterations of the RJMCMC
that a given control point was active to the total number
of iterations. In this case we see that none of the addi-
tional control points was active for a significant number
of iterations. The bottom panel again shows the pos-
terior probability density of of the recovered spectrum
using the power-law model. The gray points and er-
ror bars are the median and the 90% confidence interval
on each spectral component using the free spectral tech-
nique. From Figure 4 we can see that in this case the
adaptive technique does indeed favor no additional con-
trol points (i.e. the spectrum is parameterized by two
parameters). Furthermore we see from Figure 3 that the
recovered spectrum is very similar for the adaptive and
power-law models. The posterior is slightly broader in
the adaptive case due to the fact that we allow for more
than two spectral components and although the data fa-
vors only two, it is clear from Figure 4 that the data does
not heavily disfavor more than two components. Further-
more, the free spectral model is less constraining in the
lowest frequency component and does not constrain other
frequencies significantly.

Uniform SNR prior

log-uniform prior



Adaptive PSD estimation 
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FIG. 3: Results of BayesSpecPTA and the two standard anal-
yses (powerlaw and free spectral coe�cients) on the null case.
The top two panels show the recovered spectrum (middle
panel) and the favored control points for the spectral inter-
polation (top panel), respectively. The bottom panel is the
recovered spectrum from the powerlaw analysis (density) and
the free spectral coe�cients (error bars). In both density
plots, the dashed line is the injected PSD and the solid black
lines represent the median and 90% confidence region. In the
bottom panel, the gray error bars represent the median and
90% confidence interval on each spectral coe�cient.

2. Intermediate Case

For the intermediate case we have injected a realiza-
tion of a gaussian process that follows a broken power-law
distribution. In this case we see in Figure 5 that the spec-
trum is well recovered with the adaptive technique and
that the data strongly prefer an additional control point
at the turnover frequency in the spectrum. Furthermore,
we see from Figure 5 that, overall, the data prefers to
describe the spectrum by three parameters. This is ex-
actly the behavior that we wish to see in that the most
parsimonious model to describe a broken power-law con-
tains three parameters. Meanwhile, the bottom panels
of Figure 5 shows that the power-law noise model ex-
tremely overestimates the low frequency noise and the
free spectral model loosely models the power around the
turnover in the spectrum. This case really demonstrates
the power of the adaptive technique in which it correctly

FIG. 4: Favored number of spectral components from the
BayesSpecPTA analysis of the null case. In this case, where
the injected spectrum is a simple powerlaw, the spectrum is
best described by two parameters as one would expect.

identifies the most parsimonious model containing three
parameters while still incorporating the uncertainty asso-
ciated with more or less components, all while producing
an accurate reconstruction of the power spectral density.

FIG. 5: Same as Fig. 3 but for the intermediate case.
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FIG. 5: Same as Fig. 3 but for the intermediate case.
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FIG. 6: Favored number of spectral components from the
BayesSpecPTA analysis of the intermediate case. In this case,
where the injected spectrum has a singe turnover the spec-
trum is best described by three parameters as one would ex-
pect, and two parameters (powerlaw) is strongly disfavored
while more than 3 components is allowed.

3. Extreme Case

For the so-called extreme case we have injected a real-
ization of a gaussian process that follows a distribution
with two distinct peaks. In this case we see in Figure

7 that the spectrum is well recovered with the adaptive
technique and that the high frequency peak is clearly dis-
tinguishable while the low frequency peak is not as con-
strained. In this case, as can be seen in both Figures 7
and 8, the model complexity is in strong competition with
the goodness-of-fit in that data nearly equally prefer ei-
ther a shallow power-law (2 parameters) that models the
power at the peaks of the PSD but also the frequencies
in between, or the more complex spectrum that models
both the peaks and valleys of the PSD. These features
show the power of this kind of analysis in that one does
not have to a-priori choose a model for the spectrum and
try to find the best model from the data but instead we
allow the data to constrain the model while marginaliz-
ing over our uncertainty in that model. For comparison,
from the bottom panel of Figure 7 we see that, because of
the rigidness of the power-law model, it overestimates the
power at low frequencies and underestimates the power
at the high frequency peak. Furthermore, we see that
even the free spectral method does not significantly con-
strain the PSD at either peak.

C. Combination of Both

VII. DISCUSSION AND CONCLUSIONS
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FIG. 7: Same content as Fig. 3 for the extreme case.

FIG. 8: Favored number of spectral components from the
BayesSpecPTA analysis of the extreme case. In this case,
the injected spectrum has two peaks. The data can either be
described by a power law or a more complicated spectra that
requires � 4 control points.
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5 10 15 20

Number of Spectral Components

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

FIG. 8: Favored number of spectral components from the
BayesSpecPTA analysis of the extreme case. In this case,
the injected spectrum has two peaks. The data can either be
described by a power law or a more complicated spectra that
requires � 4 control points.



Improvement of GW limits

• If transient noise event is 
present and not modeled, GW 
limits could suffer severely 

• Wavelet model does not 
absorb GW power in the 
absence of a transient signal 

• Plan to use this method for 
upcoming GW limits.
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FIG. 4: Match between the injected white noise burst wave-
form and waveform reconstructions for the wavelet and stan-
dard noise models. We see that the wavelet models have a
higher match overall, thus indicating better fitting, and the
power-law and free spectral models have similar matches that
are both lower than the wavelet model.

both cases, the uncertainty in this inferred waveform is
much larger than in our trans-dimensional wavelet model.
Most importantly we note that the uncertainty is very
large in the regions where the injected waveform is zero.
This is mostly due to the fact that both the power-law
and free-spectral models are constrained to be a realiza-
tion of a stationary gaussian process. Furthermore we
point out that the large uncertainty and periodic struc-
ture seen in the uncertainty region for the free-spectrum
model is due to covariances between the power spectral
amplitudes and the sky location and parallax terms in
the timing model. This feature is unavoidable in such an
unconstrained model. Note that the gray areas are
the uncertainty regions on the red noise waveform
itself and not the residuals, which are produced
from the MAP red and white noise parameters.
However, investigating the waveform reconstruc-
tion does not fully describe the validity of this
model.

The match is defined as

M =
(s|s̄)p

(s̄|s̄)(s|s) , (17)

where s is the injected waveform and s̄ is the re-
constructed waveform. Figure 4 shows the match
distribution of the injected waveform with the re-
covered waveform for all four models. Note that
both wavelet models have a higher match than
the standard noise models, indicating better fit-
ting. However, it is important to note that even
though the free-spectral model is unable to decou-
ple timing model and red noise, the combination
does indeed match with the injected waveform in
a nearly identical manner as the power-law model.
Finally, in these simulations we have only included white
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FIG. 5: Top: Marginalized posterior distribution of the di-
mensionless strain amplitude of a stochastic GW background
using the trans-dimensional wavelet model (blue) and stan-
dard power-law red noise model (green). Bottom: probabil-
ity - probability plot for the GW amplitude parameter . On
the x-axis is the probability p contained in a credible inter-
val, and on the y-axis is the fraction of true values that lie
within that interval. The black diagonal line is the ideal dis-
tribution where the credible interval is perfectly consistent
with the fraction of recovered injections. Again, the blue and
green curves represent the wavelet and standard noise models,
respectively, with the shaded area accounting for the uncer-
tainty due to the limited number (500) of injections.

noise and the white noise burst, in such cases where there
is steep red noise and transient behavior, it is likely that
standard methods would perform much worse.

Lastly, we show that this kind of noise analysis could
be crucial for placing tight constraints or making a detec-
tion of a stochastic GW background. In Figure 5 we plot
the marginalized posterior distribution of the dimension-
less GW strain amplitude using the wavelet model above
and the standard power-law red noise model, plotted in
blue and green, respectively. For this simulation we use
the same data that was analyzed above. In both cases we
model the red noise via a power-law and include an addi-
tional noise term with a fixed spectral index (13/3) cor-

8

responding to a stochastic GW background of SMBHBs.
For the wavelet model we allow up to 30 wavelets. As
we see from Figure 5, we can constrain the amplitude of
a potential stochastic GW background significantly bet-
ter when we include the additional wavelets in the noise
model. Specifically, the upper 95% upper limits on the
GWB amplitude for the wavelet and non-wavelet model
are 6.7⇥10�15 and 2.3⇥10�14, – a factor of 3.5 improve-
ment. As our PTA data becomes more precise over time,
this additional noise term could prove critical in either
detecting or constraining the stochastic GW background.

One may be concerned that the wavelet model might
absorb some of the GW signal and lead to artificially
low bounds. An analysis of a set of 500 injections with
an injected GW background and di↵erent white noise
and white noise burst realizations shows this is not the
case. The wavelet model is unbiased, while the stan-
dard model without wavelets is biased toward high val-
ues. For each injection we construct p% credible intervals
and compare this to the fraction of realizations in which
the injected value lies within the p% credible interval. If
the posterior samples are an unbiased estimator of the
true probability then p% of the realizations should find
the injected value within the p% credible interval. We
then perform a two-sample KS-test to test whether the
results match the expected one-to-one relation. We find
that the wavelet model passes the KS-test (with p-value
0.9) while the standard power-law noise model fails (with
p-value ⇠ 10�8). These results show that the wavelet
model is indeed statistically unbiased when estimating
the GW background amplitude and that using a less flex-
ible power-law noise parameterization to model transient
signals results in biased GW background amplitude esti-
mates.

We have performed one last test in which we
have simulated a GWB with amplitude 5 ⇥ 10�14

and power spectral index 13/3 into a pure white
noise dataset with no white noise burst. In Figure
6 we plot the marginalized 2-d posterior of GWB
amplitude and spectral index for a standard
model with no wavelets (green), wavelet model
marginalized over number of wavelets (blue), and
wavelet model using only samples from the RJM-
CMC that use 0 wavelets. The black lines and
cross are the injected values. We see that the
posteriors are nearly identical in all three cases,
showing that there is no evidence of GW absorp-
tion by the wavelet model. In the bottom plot
we see that the data clearly favor 0 wavelets for
this injection further indicating that this model
is fully robust both in the presence and absence
of transient noise signals.

Finally, though we have tested the transient noise mod-
eling using a white noise burst, this method will recover
the waveform of any unmodelled achromatic (with re-
spect to radio frequency) signal. However, in such cases
where we know the expected waveform of an event, such
as a pulsar glitch which manifests as a ramp function in
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FIG. 6: Results from simulation with injected GWB and no
white noise burst. Top: Marginalized 2-d posterior of GWB
amplitude and spectral index for a standard model with no
wavelets (green), wavelet model marginalized over number of
wavelets (blue), and wavelet model using only samples from
the RJMCMC that use 0 wavelets. The black lines and cross
are the injected values. We see that the posteriors are nearly
identical in all three cases, showing that there is no evidence
of GW absorption by the wavelet model. Bottom: Utility vs.
number of wavelets for this injection. The data clearly favor
0 wavelets.

the residuals, this trans-dimensional method will prove
sub-optimal compared to a modeled waveform search.

B. BayesSpecPTA

Here we will test the adaptive spectral modeling tech-
niques of Section IV on three cases that we call the null,
intermediate, and extreme cases. For each simulation we
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FIG. 6: Results from simulation with injected GWB and no
white noise burst. Top: Marginalized 2-d posterior of GWB
amplitude and spectral index for a standard model with no
wavelets (green), wavelet model marginalized over number of
wavelets (blue), and wavelet model using only samples from
the RJMCMC that use 0 wavelets. The black lines and cross
are the injected values. We see that the posteriors are nearly
identical in all three cases, showing that there is no evidence
of GW absorption by the wavelet model. Bottom: Utility vs.
number of wavelets for this injection. The data clearly favor
0 wavelets.

the residuals, this trans-dimensional method will prove
sub-optimal compared to a modeled waveform search.

B. BayesSpecPTA

Here we will test the adaptive spectral modeling tech-
niques of Section IV on three cases that we call the null,
intermediate, and extreme cases. For each simulation we
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Bayes factor for > 0 wavelets is ~exp(13)
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• Real B1855+09 data shows a 
very significant transient noise 
event 

• Corresponds to observation 
run in which half of observing 
bandwidth data was corrupted 

• Plan to carry out this analysis 
on all NANOGrav pulsars in 
the future
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Figure 21. Timing summary for PSR J1738+0333. Colors are blue: 1.4 GHz, purple: 2.3 GHz, green: 820 MHz, orange: 430 MHz, red: 327 MHz. In the top panel,
individual points are semi-transparent; darker regions arise from the overlap of many points.

Figure 22. Timing summary for PSR J1741+1351. Colors are blue: 1.4 GHz, purple: 2.3 GHz, green: 820 MHz, orange: 430 MHz, red: 327 MHz. In the top panel,
individual points are semi-transparent; darker regions arise from the overlap of many points.

Figure 20. Timing summary for PSR J1713+0747. Colors are blue: 1.4 GHz, purple: 2.3 GHz, green: 820 MHz, orange: 430 MHz, red: 327 MHz. In the top panel,
individual points are semi-transparent; darker regions arise from the overlap of many points.
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•  Apply to Dispersion Measure as well as TOAs

•  Use wavelets per observing 
backend to model systematics  

•  Quite a difficult sampling problem


