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Motivation

• Integrated Path Differential Absorption (IPDA) lidar systems at both the
1.57 and 2.05 µm wavelength bands of CO2 are being considered for
space-born systems monitoring Earth atmosphere CO2 dynamics

• The 2.05 µm band, with significantly stronger band strength, is more
amenable to probing the atmosphere with weighting functions that
emphasize the lowest few km above the surface

• The availability of off-the-shelf standard components, including
semiconductor DFB lasers and optical amplifiers, has been a major driver
in the adoption of 1.57 µm band for CO2 lidars.
% Current 2-µm lidar systems utilize rare-earth ion doped crystal lasers

that are diode-pumped

• The recent development of high performance FPAs at mid-IR (1-4
µm) facilitates deployment of 2-µm lidar systems

A monolithic semiconductor seed laser operating at 2 µm wavelength
bands of CO2 would greatly enhance the operability and applicability of
IPDA 2-µm lidar systems for airborne applications as well as the
ASCENDS Earth-orbiting applications.
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Active Remote CO2 Monitoring

Figure: CO2 molecular absorption spectrum
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Lack of mature components (e.g.
optical fiber amplifiers) beyond 2.1
µm

Smaller absorption strength < 2 µm

Figure: Pressure broadened CO2 absorption line
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The absorption spectrometer
uses an on/off target gas
absorption line to infer
concentration
Lasers with reproducible
tunability larger than
absorption line width simplify
system design
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Semiconductor Lasers for Injection Seeding Applications

Solid-state lasers
X High output power
X Long coherence length ( narrow

linewidth)
X Circular beam ( M2 ∼ 1)

% Limited tuning range <10 GHz

% Slow frequency modulation speeds
<10 KHz

% Large thermal budget

Lockheed Martin Coherent Technologies METEOR laser

Semiconductor lasers
X Compact
X No moving parts ( less susceptible

to vibrations)
X Large tuning range >150 GHz
X Fast frequency and amplitude

modulation speeds >1 GHz
X Low maintenance cost

% Larger linewidth2.05 m semiconductor laser butterfly package 

2.05 m butterfly components with
 integrated optical isolator

JPL’s 2-µm butterfly package

Semiconductor laser’s compact size, low thermal mass, and rugged
architecture makes it highly suitable for airborne and space applications
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Fiber-based Transmitters for Lidar Applications

All-fiber lidar architecture
• More compact and robust transmitter
• Easier to maintain (no optical alignment needed)
• Less susceptible to environmental vibrations
• Allows to use fiber amplifiers
• Using polarization maintaining optical fibers minimizes polarization

drifts resulting in more sensitive measurements
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DFB Semiconductor Lasers for 2.05 µm Lidar Systems

Laser requirements
PM fiber output
∼30 mW output power
<100 KHz laser linewidth

Strained InP lasers have limited output
power
GaSb-based structures: no regrowth
techniques
GaSb-based structures enable high power
semiconductor lasers at mid-IR

Figure: Schematic representation of a
conventional DFB structure using regrowth
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T. Sato et al. IEEE photon. Technol. Lett. 20 (2008).

Figure: JPL’s solution: laterally coupled
DFB structure

S. Forouhar et al. Applied Physics Letters. 100 (2012).

Laterally-coupled DFB InGaAsSb/AlGaAsSb multiple quantum well structures on
GaSb was chosen as an alternative approach to achieve power requirements.

18th Coherent Laser Radar Conference June 29, 2016 MICRODEVICES LABORATORY 7 / 16



Motivation Introduction High Power Semiconductor Lasers Fiber-pigtailed Laser Modules Conclusion

DFB Semiconductor Lasers for 2.05 µm Lidar Systems

Figure: Calculated optical mode
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• Single-mode optical waveguides
are etched into low-index cladding
layer

• Second order gratings are etched
along side ridges

Helps suppress second DFB
mode
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Laterally Coupled GaSb-based Semiconductor DFB Lasers

Figure: LC-DFB laser after SiNx deposition
and electroplating

• SiNx isolation layer deposited by
PECVD, followed by electroplating of
thick Au top contacts

• Anti-reflection coating layer is applied
to front facet

• Back facets are protected by
passivation layers

Calculated/measured reflectivity spectra
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Figure: Mounted laser on submount
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DFB Laser Performance
Output power versus input current
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Lasing spectrum vs. bias current and temperature
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2.05 µm Laser Butterfly Packages
2.05 µm semiconductor laser butterfly

package2.05 m semiconductor laser butterfly package 

2.05 m butterfly components with
 integrated optical isolator

2.05 µm butterfly components with
integrated optical isolator

2.05 m semiconductor laser butterfly package 

2.05 m butterfly components with
 integrated optical isolator

Measured coupling efficiency
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40% coupling efficiency is demonstrated
>60% coupling efficiency can be achieved using
double acylindrical lens with a focusing lens (3
lens scheme)
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2.05 µm Linewidth Measurement Techniques

Heterodyne technique
X Beat two similar laser with small

frequency offset and look at the
beating spectrum

X Relatively simple to implement

% Requires very stable lasers to
minimize frequency drift

Self-delayed homodyne technique
X Beat one laser with its delayed

replica
X Is insensitive to frequency jitter
X Simple to implement

% Requires long (>20 km) of single
mode optical fiber

Frequency noise spectrum measurement setup

DFB Laser
λ = 2.05 µm

τ∆ν<<1

Thermal Phase
 Modulator

Locking Circuit

High-speed
Detector
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Laser Linewidth Measurement

Measured frequency noise spectrum at
different bias current
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Linewidth < 30 KHz was measured for
these lasers. The spectral purity is due to the
small linewidth enhancement factor of this
material system, long optical cavity and
close to unity κL.
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Laser Linewidth Measurement: Heterodyne setup

Beating a experiment setup
2.05 µm diode

inline optical isolator

Tm,Ho:YLF laser
locked to 

CO2 line center 

High speed detector Spectrum Analyzer

Oscilloscope

Beating spectrum (left) and Fast Fourier Transform (FFT) of time traces
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JPL Semiconductor Laser Capabilities

Figure: JPL semiconductor laser inventory
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• The GaSb based diode lasers cover a
wide spectral range (2-3.5 µm)

• Beyond 3 µm, GaSb-based interband
cascade lasers (ICLs) perform better

• Beyond 4 µm, demonstrated QCLs
with record low power consumption
(<1 W)

• We have successfully fabricated and
delivered semiconductor lasers to a
variety of different NASA missions

• End-to-end laser fabrication capability

• Space-qualification for semiconductor
lasers

• Record high output power single mode
semiconductor lasers in the mid-IR
range

• Reliability measurement for
semiconductor lasers
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Conclusion

X High power fiber-pigtailed semiconductor lasers at 2.05 µm range have been
realized

X The lasers show excellent side-mode suppression and spectral purity

X The lasers have less than 100 KHz natural linewidth

X The butterfly package modules with fiber-coupled output power facilitates
implementation of fiber-based optical transmitters for airborne and space
applications

X The polarization maintaining (PM) output fiber removes uncertainties associated
with polarization drifts and improve measurement sensitivity
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