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EPICS
(Extreme-Performance Ion trap-Cavity System)

Collaboration between Duke, Sandia, Jet Propulsion 
Laboratory, and NIST
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Hyperfine ion qubits

Doppler cooling,
State preparation,

State readout

Gate control
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Trapped ion qubits

• Ion-based quantum 
computing 
frameworks have long 
coherence times and 
high gate/readout 
fidelities.

• Slow gates and 
readout

Surface electrode ion trap, Sandia
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EPICS
(Extreme-Performance Ion trap-Cavity System)

• Measurement time: how long do you have to wait before declaring the 
qubit in the bright/dark state?

• Only 10% of light collected by lens. 
Current PMTs are ~ 30% efficient.

• Short integration time: might miss 
photons from bright state.

• Long integration time: might have 
dark counts; non-zero probability 
of state switching.
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Photomultiplier Tubes

Advantages:

Disadvantages:
• Low quantum efficiency (~30%)
• Large volume
• Dark count rates ~ 50 Hz 

(6 Hz w/ filter)

• Easy to use
• Large active area (~ 1 cm2)
• Can be fast (~ 50 ps jitter)
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SNSPDs

Advantages:

Disadvantages:
• Requires low temperatures
• Smaller active area (fiber-

coupled)
• Largely uncharacterized 

below 400 nm

• High detection efficiencies possible 
(>90%)

• Low jitter (< 100 ps)

Marsili et al. (2013)
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Why MoSi?

WSi MoSi NbN MgB2

Bulk Tc 5 K 7 K 16 K 40 K

Compatible w/
optical stack? Yes Yes Somewhat Not yet

Jitter ~ 150 ps ~ 75 ps ~ 50 ps ~ 50 ps

Three goals: High efficiency, high operating temperature, low dark counts
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Changes from NIR WSi 
devices

• WSi devices have a gold 
back mirror and a 
TiO2/SiO2 AR coating to 
make an optical cavity 
stack.
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Changes from NIR 
WSi devices

• WSi devices have a gold 
back mirror and a 
TiO2/SiO2 AR coating to 
make an optical cavity 
stack.

• Gold is not a good 
reflector below 400 nm.
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• WSi devices have a gold 
back mirror and a 
TiO2/SiO2 AR coating to 
make an optical cavity 
stack.

• Gold is not a good 
reflector below 400 nm.

• TiO2 does not have good 
transmission below 400 
nm.
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Changes from NIR WSi devices

wavelength (nm)

300 350 400 450 500 550 600 650 700

re
fle

ct
an

ce
 (%

)

0

20

40

60

80

100

wavelength (nm)

350 355 360 365 370 375 380 385 390

pr
ed

ic
te

d 
ab

so
rp

tio
n

0.7

0.75

0.8

0.85

0.9

0.95

1



Copyright 2016. All rights reserved.

Device geometry

Wire width = 70 nm. Wire pitch = 175 nm. ~ 15,000 sq
Active area diameter = 15 um.

Considerations:

• Thicker films / wider wires: 
higher operating temperatures, 
lower dark counts, faster, 
smaller plateau, more likely to 
latch

• Smaller pitch: higher efficiency, 
less likely to latch, avoids 
diffraction effects, slower, 
susceptible to current crowding, 
more likely to have fabrication 
difficulties

Tried thicknesses ranging from 9 to 
15 nm, wire widths from 60 nm to 
160 nm, pitches from 150 nm to 400 
nm, and active area diameters 
between 15 um and 18 um.
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Efficiency

With dielectric mirror

bias current ( A)
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Temperature performance

Dark count rate increases at higher temperatures, limiting 
useable portion of plateau. At low temperatures, operational 

DCR < 100 mHz.

bias current ( A)
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Timing / Fluorescence

Yellow: Gaussian fit to largest feature. Green: double exponential fit to 
background (excluding reflected pulses). Red: Gaussian fits to reflected pulses. 
Black: sum of all fits.
The exponential background contributes 2.5% of all counts, and the dominant 
component has a decay time of 8.7 ns. The reflected pulses contribute 0.2% of 
all counts. 
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Jitter

laser intensity setting
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Total jitter is > 140 ps and increases with decreasing bias current or increasing laser intensity. Jitter 
may be limited by bandwidth of multimode fiber – currently integrating single mode fiber for more 
accurate measurements.
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Maximum count rate

counts per second
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Knee at ~2 MHz
3 dB change at > 30 MHz 
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Maximum count rate

time (ns)
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Summary: UV MoSi SNSPDs
• 80% detector efficiency at 370 nm
• Dark count rates < 100 mHz in situ; 
• Operating temperatures up to 3.6 K allow for 

use of compact cryocooler
• Promising timing properties

Emma Wollman
Emma.E.Wollman@jpl.nasa.gov
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Intrinsic dark counts at low T
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Copyright 2016. All rights reserved.

Cryostat

40K

3K

780mK

PhotonSpot
prototype

~ 800 mK base 
temperature

6 UV fibers; 
6 NIR fibers

12 RF lines
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