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WSi Superconducting Nanowire 
Single Photon Detectors (SNSPD)

• High system detection efficiency: ~ 90% at 1550 nm wavelength

• Low jitter: 50 - 150 ps FWHM

• Low intrinsic dark count rate: ~ 1 cps

• Low reset time: ~ 25 ns

• High maximum count rate: 20 Mcps

• UV to mid-IR sensitivity 

Marsili et al., Nature Photonics 7, 210 (2013)
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WSi SNSPD arrays
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Drawback: Low operating temperature: T < 1 K

Complex cryogenics

WSi Superconducting Nanowire 
Single Photon Detectors (SNSPD)
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Refrigerator Comparison

He3/He4 Sorption/Pulse Tube Stirling/Pulse Tube
(Raytheon LT-RSP2)

T ~ 10 K

~ 1’

T ~ 500 mK

~ 4.5’



Jet Propulsion Laboratory
California Institute of Technology

• MgB2 has bulk TC ~ 40 K

• Well behaved, metallic superconductor

• SNSPDs may operate at 20 K where cryogenics is easy, cost 
effective, reliable, and compact

Our Approach: MgB2 SNSPDs

J. Nagamatsu et al.,  Nature 410 , 63-64 (2001)
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Challenges of MgB2 SNSPDs

• Difficult to grow high-quality MgB2 thin films 

• MgB2 nanowire fabrication complex because:

i. MgB2 highly reactive with oxygen
ii. MgB2 etch limited to argon ion milling

• Single photon detection at 20 K never demonstrated
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High Quality MgB2 Thin Films

Hybrid Physical-Chemical Deposition (HPCVD)

C. Zhuang et al., Supercond. Sci. Technol. 23 (5), 055004 (2010)
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Problem with sub-10 nm films 

d = 7.5 nm d = 25 nm

C. Zhuang et al., Supercond. Sci. Technol. 23 (5), 055004 (2010)

1 µm 1 µm

sub-10 nm films have poor connectivity
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Dry etch
(Ar Ion mill) 

Passivation
(Sputtering SiO2) 30 nm SiO2

SiC

50 nm MgB2

30 nm Au

SiC

5 nm MgB2 5 nm MgB2

SiC

Thin Film Fabrication Process

Etch-back technique achieves high-quality sub-10 nm films
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M. A. Wolak et al.,  IEEE Trans. Appl. Supercond. 25, 3 7500905 (2015)

Preliminary Results
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Spin EBL
resist

Write NW
(EBL)

30 nm SiO2
5 nm MgB2

SiC

5 nm MgB2

30 nm SiO2

SiC

400 nm ma-N

5 nm MgB2

SiC

30 nm SiO2

100 nm

SiC

Dry etch
(Fluorine ICP) 

PL define
Contact Pads 

SiC

Blanket
Au/Ti

AZ 5214

SiC

Current fabrication process
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Passivation
(SiO2)

Dry etch
(Ar Ion mill) 

SiC SiC

Current fabrication process



Temple 
University

5 µm
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SEM image of 100 nm bridge
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ΔT = 7.7 K
RRR(RT/40 K) ~ 1.4

Transition Temperature, TC

TC = 30.8 K
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Single Photon Sensitivity

η2 = 0, µη1<<1 

Pclick(µ) ~ μη1

µ = mean photon flux
η1 = single photon detection efficiency
η2 = two photon detection efficiency

𝑃𝑃click 𝜇𝜇 = 1 − 𝑒𝑒−𝜇𝜇 �
𝑛𝑛=0

∞
𝜇𝜇𝑛𝑛

𝑛𝑛!
1 − 𝜂𝜂1 𝑛𝑛 1 − 𝜂𝜂2 ⁄𝑛𝑛 𝑛𝑛−1 2
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Single Photon Detection at 10 K!

PCR is linear with laser power: Pclick(µ) ~ μη1

λ = 635 nm
T = 10 K
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Device Detection Efficiency, DDE

Temperature
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Dark Count Rate, DCR

Temperature
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Jitter

50 ps FWHM
Artifact
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Fall time ~ 600 ps
Rise time ~ 245 ps
Lk/sq ~ 87 pH/sq

Photoresponse Pulse

Afterpulsing
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T = 3 K

I / ISW = 95%

Afterpulsing
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T = 4 K

I / ISW = 95%

Afterpulsing
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T = 5 K

I / ISW = 95%
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T = 5 K

I / ISW = 95%

Afterpulsing disappears at high temperature
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Conclusion

• Fabrication of thin (< 10 nm) MgB2 films with high critical 
temperature (TC > 30 K)

• Fabrication of MgB2 superconducting nanowires with high critical 
temperature (TC > 30 K)

• Single-photon response up to 10 K temperature

• 50 ps FWHM jitter

• High speed operation may be possible at high temperature



End of Presentation
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S-N Transition
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Single Photon Sensitivity at 635 nm
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ISW ~ 11.5 µA

Dark count rate, DCR
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T = 3.0 K

Single Photon Sensitivity @ 1550 nm
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T = 3.0 K

Device detection efficiency, DDE

λ =1550 nm



NTT

37
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TC = 18.4 K 
ΔT = 2.71 K 
RRR (RT/20K) = 1.11

Transition temperature, TC
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Fall time ~ 1.3 ns
Rise time ~ 375 ps
Lk/sq ~ 32 pH/sq
Jitter ~ 65 ps

Afterpulsing present

Optical response at 1550 nm
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Dark count rate, DCR

w = 100 nm
5 µm x 5 µm

Meander
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Device detection efficiency at 1550 nm

w = 100 nm
5 µm x 5 µm

Meander
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High TC SNSPDs: Flight Applications

Ground Laser  Receiver (GLR)
Palomar Mtn., CA
5m-dia. Hale Telescope

Performance using 4W average laser power w/22 cm 
flight transceiver to 5m ground telescope

1550 nm

Deep space optical 
communication 
(Mars and beyond)
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High TC SNSPDs: Flight Applications

Ground Laser  Receiver (GLR)
Palomar Mtn., CA
5m-dia. Hale Telescope

Performance using 4W average laser power w/22 cm 
flight transceiver to 5m ground telescope

1550 nm

Symmetric
communication
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