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INTRODUCTION
• Many algorithms exist to decompose scattering when full polarimetric 

measurements are made
• Most of these algorithms performs the decomposition in steps, which 

effectively assigns the maximum amount of scattering to the vegetation 
layer

• It has already been shown that when the algorithms do not ensure positive 
powers, the vegetation contribution is over-estimated

• In addition, some algorithms perform a de-orientation step on the overall 
measured matrix before performing the decomposition

– This has been shown to decrease the vegetation contribution and increase double 
reflections

– Is de-orienting the entire matrix appropriate from an electromagnetic modeling 
viewpoint?
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EXAMPLE: NNED

• Assigns maximum possible to volume 
scattering term first before solving for 
the other parameters

• This may not give the optimal solution 
over all parameters 

𝐂𝐂 = 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 + 𝑃𝑃𝑑𝑑 𝐶𝐶𝑑𝑑(𝛼𝛼) + 𝑃𝑃𝑠𝑠 𝐶𝐶𝑠𝑠(𝛽𝛽) + 𝐶𝐶𝑅𝑅
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GENERAL APPROACH
• Chen, Wang, Xiao, Sato (2014)
• Perform global constrained optimization over 

all parameters in the model
– Minimize L2-norm of remainder matrix
– Nonnegativity constraints on each model term

• Can be applied to any scattering model
• But computationally more demanding

– Also, numerical optimization yields local optima 
but unclear if it is guaranteed to converge to the 
correct global optimum
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REVIEW: NNED PRINCIPLE

• All terms must have nonnegative eigenvalues 
to correspond to physical scatterers

• If we are confident in our knowledge of the 
covariance matrix 𝐂𝐂 , and the remainder is 
due to some other physical scatterer not 
captured by the model, it should also satisfy 
the nonnegative eigenvalue constraint

• Assumes low noise/speckle
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“OPTIMAL” NNED
• Similar to Chen, Wang, Xiao, Sato (2014)
• Global constrained optimization over all 

parameters
– Minimize trace of remainder matrix
– Nonnegativity constraints on each model term, 

including nonnegative eigenvalues on remainder
• Can be applied to any scattering model
• Again, computational issues, but good news in 

some important special cases:
– Linear combination of fixed matrices
– Freeman-Durden model and similar models
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For linear combination of fixed matrices:

This is a semidefinite program; reasonably efficient algorithms 
with guaranteed convergence to global optimum

𝐂𝐂 = 𝑎𝑎1 𝐶𝐶1 + 𝑎𝑎2 𝐶𝐶2 + ⋯+ 𝑎𝑎𝑛𝑛 𝐶𝐶𝑛𝑛 + 𝐶𝐶𝑅𝑅

The optimization problem we solve is 

minimize:   trace 𝐶𝐶𝑅𝑅

𝐶𝐶𝑅𝑅 ≽ [0]
subject to:    𝑎𝑎1 ≥ 0, … ,𝑎𝑎𝑛𝑛 ≥ 0
𝑎𝑎1, … , 𝑎𝑎𝑛𝑛
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For Freeman-Durden model:

𝐂𝐂 = 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 + 𝑃𝑃𝑑𝑑 𝐶𝐶𝑑𝑑(𝛼𝛼) + 𝑃𝑃𝑠𝑠 𝐶𝐶𝑠𝑠(𝛽𝛽) + 𝐶𝐶𝑅𝑅

𝐶𝐶𝑑𝑑(𝛼𝛼) =
1

1 + |𝛼𝛼|2
|𝛼𝛼|2 0 𝛼𝛼

0 0 0
𝛼𝛼∗ 0 1

𝐶𝐶𝑠𝑠(𝛽𝛽) =
1

1 + |𝛽𝛽|2
|𝛽𝛽|2 0 𝛽𝛽

0 0 0
𝛽𝛽∗ 0 1

minimize:   trace 𝐶𝐶𝑅𝑅

𝐶𝐶𝑅𝑅 ≽ [0]
subject to:    𝑃𝑃𝑉𝑉 ≥ 0,𝑃𝑃𝑑𝑑 ≥ 0,𝑃𝑃𝑠𝑠 ≥ 0
𝑃𝑃𝑉𝑉 ,𝑃𝑃𝑑𝑑 ,𝑃𝑃𝑠𝑠,𝛼𝛼,𝛽𝛽
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Re-write as:

𝐂𝐂 = 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 + 𝑀𝑀 + 𝐶𝐶𝑅𝑅

where

subject to:    𝑃𝑃𝑉𝑉 ≥ 0, 𝑀𝑀 ≽ [0]
𝑃𝑃𝑉𝑉 , 𝑀𝑀

The optimization problem we solve is 

min trace { 𝐂𝐂 − 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 − 𝑀𝑀 }

𝐂𝐂 − 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 − 𝑀𝑀 ≽ [0]

𝑀𝑀 =
𝑀𝑀11 0 𝑀𝑀13

0 0 0
𝑀𝑀31 0 𝑀𝑀33

= 𝑃𝑃𝑑𝑑 𝐶𝐶𝑑𝑑(𝛼𝛼) + 𝑃𝑃𝑠𝑠 𝐶𝐶𝑠𝑠(𝛽𝛽)
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Let 𝑄𝑄 = 𝐂𝐂 − 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉

And re-write the optimization problem as:

𝑃𝑃𝑉𝑉 ≥ 0 subject to:   𝑀𝑀 ≽ [0], 𝑄𝑄 − 𝑀𝑀 ≽ [0]

min   trace { 𝑄𝑄 − 𝑀𝑀 }
𝑀𝑀min � �

𝑄𝑄 ≽ [0]

𝑀𝑀 =
𝑀𝑀11 0 𝑀𝑀13

0 0 0
𝑀𝑀31 0 𝑀𝑀33
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Let 𝑄𝑄 = 𝐂𝐂 − 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉

And re-write the optimization problem as:

if 𝑄𝑄22 = 0 , solution is  𝑀𝑀 = 𝑄𝑄
if 𝑄𝑄22 > 0 , solution is

𝑀𝑀 = 𝑄𝑄 −
1
𝑄𝑄22

𝑞⃗𝑞𝑞⃗𝑞†
𝑞⃗𝑞 =

𝑄𝑄12
𝑄𝑄22
𝑄𝑄32

Let

𝑀𝑀 =
𝑀𝑀11 0 𝑀𝑀13

0 0 0
𝑀𝑀31 0 𝑀𝑀33

𝑃𝑃𝑉𝑉 ≥ 0 subject to:   𝑀𝑀 ≽ [0], 𝑄𝑄 − 𝑀𝑀 ≽ [0]

min   trace { 𝑄𝑄 − 𝑀𝑀 }
𝑀𝑀min � �

𝑄𝑄 ≽ [0]



June 6-9, 2016 EUSAR 2016 12

Plugging in the analytical solution:

𝑃𝑃𝑉𝑉 ≥ 0

𝑞⃗𝑞†𝑞⃗𝑞
𝑄𝑄22

min � �=
𝑄𝑄 ≽ [0]

Solution is either
• at where derivative with respect to 𝑃𝑃𝑉𝑉 is zero
• at the limit set by one of the constraints
Plug solution for 𝑃𝑃𝑉𝑉 back into previous formula to find 𝑀𝑀

subject to:      𝑃𝑃𝑉𝑉 ≥ 0
𝑃𝑃𝑉𝑉

rational function of 𝑃𝑃𝑉𝑉
(quadratic over linear)

min � �

𝐂𝐂 − 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 ≽ [0]

=

𝑃𝑃𝑉𝑉 ≥ 0 subject to:   𝑀𝑀 ≽ [0], 𝑄𝑄 − 𝑀𝑀 ≽ [0]

min   trace { 𝑄𝑄 − 𝑀𝑀 }
𝑀𝑀min � �

𝑄𝑄 ≽ [0]
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OPTIMAL NNED FOR 
FREEMAN-DURDEN MODEL

• Computationally efficient, globally optimal 
solution for 𝑃𝑃𝑉𝑉 and 𝑀𝑀

• Can substitute any other choice of 𝐶𝐶𝑉𝑉
• No reflection symmetry assumption on 𝐂𝐂

𝐂𝐂 = 𝑃𝑃𝑉𝑉 𝐶𝐶𝑉𝑉 + 𝑀𝑀 + 𝐶𝐶𝑅𝑅

𝑀𝑀 =
𝑀𝑀11 0 𝑀𝑀13

0 0 0
𝑀𝑀31 0 𝑀𝑀33

= 𝑃𝑃𝑑𝑑 𝐶𝐶𝑑𝑑(𝛼𝛼) + 𝑃𝑃𝑠𝑠 𝐶𝐶𝑠𝑠(𝛽𝛽)
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OPTIMAL NNED FOR 
FREEMAN-DURDEN MODEL

• Surface- and double-bounce assignments from 𝑀𝑀 is 
inherently underdetermined; infinitely many possible 
valid choices

• Eigenvector decomposition is one choice
• Can also use original assignment scheme proposed by 

Freeman and Durden without problem of negative 
powers, since 𝑀𝑀 ≽ [0]

𝑀𝑀 =
𝑀𝑀11 0 𝑀𝑀13

0 0 0
𝑀𝑀31 0 𝑀𝑀33

= 𝑃𝑃𝑑𝑑 𝐶𝐶𝑑𝑑(𝛼𝛼) + 𝑃𝑃𝑠𝑠 𝐶𝐶𝑠𝑠(𝛽𝛽)
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TEST IMAGE
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C-BAND

Freeman and 
Durden

NNED optimal NNEDVolume

double 
reflections

Surface 
scattering
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C-BAND
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L-BAND

Freeman and 
Durden

NNED optimal NNEDVolume

double 
reflections

Surface 
scattering
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L-BAND
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P-BAND

Freeman and 
Durden

NNED optimal NNEDVolume

double 
reflections

Surface 
scattering



June 6-9, 2016 EUSAR 2016 21

P-BAND
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SUMMARY AND CONCLUSIONS

• We presented a general framework for model-based 
interpretation of observed polarimetric scattering, 
based on NNED principles

• Similar to Chen et al. (2014), the general inversion is 
formulated as a constrained optimization problem, 
but with different objective function and constraints

• Globally optimal solutions can be computed 
efficiently for important special cases:
– Linear combination of fixed matrices
– Freeman-Durden model (and variants)
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