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Key Questions

• This talk summarizes recent activities at JPL to simulate the 
dynamics of the DART impact ejecta as it moves through and 
exits the Didymos binary asteroid system.

• This work is aimed at answering several key questions relevant 
to the deflection experiment, and secondarily to operation of a 
possible observer spacecraft in the vicinity:
− How large of a crater is produced? Over what duration? How much 

material is ejected?
− What fraction of ejecta return impacts, vs. transfer impacts, vs. escapes?
− How long does ejecta persist on way to return / transfer / escape? i.e. 

What are ejecta clearing timescales? vs. particle size? 
− Will there be many particles left at given times past impact (e.g.15days)?
− With what size-frequency distribution?
− Where do return / transfer impacting ejecta accumulate on bodies?
− What are spatial densities and fluxes of critical quantities vs. time 

throughout relevant volume surrounding Didymos barycenter?
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System Setup / Modeling - Didymos

• Conformed to latest version of DRM
• Used Didymos primary (Didymain) shape model provided by 

Naidu & Benner as of Jan. 4, 2016 that is consistent with 
aligning primary spin pole & mutual orbit pole  see Naidu’s talk 

• Explored 3 options for Didymos secondary (Didymoon) shape:
• mesh filling the ellipsoid with DRM’s semi-axes.
• rescaled DP107 secondary.
• rescaled KW4 secondary.

• Propagated F2RBP 
dynamics of system, in 
cases with pole alignment 
and with 3° pole misalign-
ment, for eo= {0,1,2,3}%, 
with ωBo tweaked for most 
“relaxation” of dynamics

System Properties
Didymain GM = 34.9016 +3.7582 / -1.8125 m3/s2

Mass = 522.9e9 +56.3e9 / -27.2e9 kg
Mean radius = 390.038 +/-39.004 m
Density = 2.1040 +1.0930 / -0.6053 g/cc
Spin period = 2.2600 +/- 0.0001 hr

Didymoon GM = 0.3232 +0.0874 / -0.0579 m3/s2
Mass = 4.843e9 +1.309e9 / -0.867e9 kg
Mean radius = 81.908 +12.482 / -11.702 m
Density = 2.1040 +1.0930 / -0.6053 g/cc
Spin period = 11.920 +0.004 / -0.006 hrs (synchronous assum.) 

Mutual Orbit Mean separation = 1.180 +0.040 / -0.020 km
Eccentricity = 0.02 +0.01 / -0.02
Orbit period = 11.920 +0.004 / -0.006 hrs
Orbit pole longitude = 310 +30/-175 deg (EMO2000)
Orbit pole latitude = -84 +8/-6 deg (EMO2000)
Binary obliquity = 174 +6/-8 deg. 
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System Setup / Modeling - Didymos
• F2RBP sims from pre-AIM-arrival epoch past impact epoch
• Relative velocity vector of DART w.r.t. inertial space at impact epoch 

obtained from J. Atchison @APL, along with desired critical angles (impact 
plane angle = -11.7157°, solar phase angle = 47.035089°, impact angle = 
168.28426°)

• Initial mutual orbit “phase” of Didymoon adjusted to produce desired precise 
impact geometry at desired impact epoch

model5 = 
with pole 
alignment
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System Setup / Modeling - Didymos

• For each of 8 pre-impact sims, state closest to impact epoch is picked off, 
impulsively changed to initialize post-impact sims

• Selected a few impact points compatible with expected dispersion about 
ideal approach path through Didymoon CM

• Also varied β={1, 1.2, 2}
• From among 96 post-impact sims, selected “low”, “moderate”, and “high” 

excitation cases  see Chesley’s talk
• Used each as “substrate” F2RBP motion for ejecta simulations

model11 = 
with 3° pole 
misalignment
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Impact Location & Impulse Application
• Knowledge error in impact supposedly ~1 m? (1σ?)
• Control error on impact point to be <15m w.r.t. center of figure – amplified 

this by 50% due to possible COF offset from CM
• Used as impact points the facet centers falling within “tube” of this radius 

about velocity vector through CM:
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Methodology: Crater Excavation Physics
• Ejecta particles liberated from expanding (w/ time) circular crater footprint –

centered on chosen “launch facet”, displaced 0.001 body mean radii 
above, but kept parallel to, that facet

• However, crater modeling is consistent w/ normal impact…
• Adapted crater scaling law equations formulated as in Housen et al. 1983, 

JGR 88, B3, 2485-2499 and Housen & Holsapple 2011, Icarus 211,856-875
• In notation of latter paper, parameters used were:

Parameter Value units Param. Value
facet ID ** 171,135,167 -- ν 0.4
g ** (5.13,5.69,6.07)e-5 m s-2 μ 0.41
a 0.5 m C1 0.55
m 300 kg k 0.30
U 7027.1 m s-1 H1 0.59
δ 1018.59 kg m-3 H2 0.39
ρ 2103.99 kg m-3 n1 1.2
porosity 35% n/a n2 1
Y 100 -- p 0.3

~1m
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Methodology: Ejecta Initial Position, Velocity
• Realistically calculated impact ejecta 

field's initial (i.e. at launch) properties

• Position of each particle within crater 
footprint randomly drawn: 

using
using 

• Calculated launch time relative to                                                                  
time of impact

• Small (1%) random deviation and 
constraint placed on launch radius

• Calculated initial surface-relative velocity vector magnitude

• Small (1%) random deviation, then constraint on this velocity magnitude too 

• Velocity vector tilt     computed from 4th-order polynomial fit interpolated 
from ejection angle data in Cintala et al. 1999, MPS 34, 605-623. 

• Surface-relative initial state transformed into inertial barycentric i.c.’s
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Resulting Crater Properties

Feature / Characteristic of Cratering Event Value units
impact @171, low excitation binary dynamics shape-based gravity 
and actual shape rotation net normal surface acceleration 5.13×10-5 m s-2

impact @135, moderate excitation binary dynamics , shape-based 
gravity and actual shape rotation net normal surface acceleration 5.69×10-5 m s-2

impact @167, high excitation binary dynamics , shape-based gravity 
and actual shape rotation net normal surface acceleration 6.07×10-5 m s-2

Radius of crater produced, Rc 13.693 m
Crater formation duration, Tc ≈107 s
Total mass of ejecta 1.6204×106 kg
Maximum facet-relative launch speed (at the impactor radius) 1204.53 m s-1

Minimum facet-relative launch speed (at outer rim of final crater) 0 m s-1

• Cratering is consistently within the strength regime, so although local g
varies, crater properties are the same:
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Methodology: Ejecta Propagation Approach

• On top of each substrate F2RBP motion case, did restricted 
“full” three body problem (RF3BP) propagation of N=1e6 ejecta 
particles under all relevant dynamical effects:
− Shape-model-derived full polyhedral body gravity of both Didymoon and 

Didymain, per method in Werner & Scheeres 1997, CMDA 65, 313-344.
− Body impact detection included, no convergence issues close to surface
− Differential solar tide acceleration included
− Differential Solar Radiation Pressure (SRP) acceleration included
− For SRP, modeled shadowing by polyhedral shape models
− Also accounted for realistic particle size-frequency distribution and 

particle optical properties  very important w.r.t. SRP!

• All ejecta simulations run out to 60 days post-impact duration
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Methodology: Particle Mass, Size Distribution
• Probability distribution functions for mass & number 

abundance have power law fit of form: 

• Sampled quanta of mass w/ average     drawn from

Then draw with:

• Later switched to uniformly drawing            (in mm) from [-1,2]

• Mass quanta sampling means we must scale each tracer 
particle for each mass quantum by multiplier     :

want to preserve value of this

but can adjust this…
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Outcome Time Histories, low excitation case

outcome (%) by # by mass

re-impact 8.52 10.94

txfer impact 9.34 17.55

escape 82.14 58.62

left @60 days 2.28e-3 12.88
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Clearing Timescales, low excitation case

whole pop.: 0.1667   0.3333   48.1667  72.1667    2.3333   7.8333
-----------------------------------------------------------------

1-20 :    0.1667   0.1667   42.1667 42.1667    2.1667  2.3333
21-40 :    0.1667 0.5000   54.1667  60.1667    2.8333  8.6667
41-60 :    0.1667  2.1667   78.1667 90.1667   10.5000  18.5000

61-80 :    0.1667 11.1667  114.1667 132.1667   18.3333 31.5000
81-100:    1.5000  16.3333  168.1667 240.1667   32.6667 62.3333

101-120:   10.6667  49.1667  246.1667 504.0000   61.0000  96.0000
121-140:   46.3333 103.5000  330.1667 570.0000  110.1667 184.8333
141-160:   83.8333 257.5000  480.1667 822.0000  214.8333 379.5000

161-180:  151.8333 453.1667  594.0000 972.0000  382.5000 580.5000
181-200:  211.6667 622.1667  654.0000 978.0000  688.1667 958.6667

all times are in 
hours, to nearest 

10 minutes

reached 95% 
of re-impact

reached 99% 
of re-impact

reached 95% 
of escape

reached 99% 
of escape

reached 95% 
of transfer

impact

reached 99% 
of transfer 

impact
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Outcome Time Histories, moderate excitation

outcome (%) by # by mass

re-impact 11.87 13.35

txfer impact 24.93 32.02

escape 63.20 54.50

left @60 days 1.4e-6 0.13
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Outcome Time Histories, high excitation

outcome (%) by # by mass

re-impact 20.93 21.31

txfer impact 2.08 2.58

escape 76.99 73.87

left @60 days 2.2e-5 2.25
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Size-Freq. Distrib. vs. Time, low excitation
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Size-Freq. Distrib. vs. Time, mod. excitation
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Size-Freq. Distrib. vs. Time, high excitation
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Re-Impact Locations by Size, low excitation
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Density of Returning Ejecta, low excitation
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Avg. Thickness of Same, low excitation
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Re-Impact Locations by Size, mod. excitation
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Re-Impact Locations by Size, high excitation



June 12, 2019 24 Fahnestock

Density of Transferring Ejecta, low excitation
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Density of Transferring Ejecta,mod. excitation



June 12, 2019 26 Fahnestock

Density of Transferring Ejecta, high excitation
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Conclusions

• Significant variation in ejecta outcomes, and time to reach 
them, between different cases

• Large #’s of particles, representing sizeable fraction of mass, 
persist to long (i.e. several weeks) duration:
− Clearing times nonlinearly dependent on particle size as expected…
− Only the largest ejecta persists so long…

• Strong dependence on local surface geometry at impact site
• Return-impacting material accretes mostly in ±50° lat. band, 

with small concentrations antipodal to impact location and on 
“far” side w.r.t. Didymain

• Transfer-impacting material accretes consistent with 
intersection/fallback of ejecta cone with Didymain surface

• Again, strong dependence on local surface geometry
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Questions?
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