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• Overview of Fast Lossless (FL) Hyperspectral Data 

Compression Algorithm

• Fast Lossless FPGA Implementation and Airborne 

Demonstrations

• Overview of lossless & near-lossless Hyperspectral 

Data Compression (FLEX)

• Fast Lossless Extended (FLEX) SW/FPGA 

implementation and Data Throughput Performance

Outline
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Fast Lossless (FL) MSI/HSI Compressor
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Approach: Predictive compression, encoding samples one-at-a-time

• Predictor

– Computes predicted sample value from previously encoded 
nearby samples (prediction neighborhood illustrated at right)

– Adaptively adjusts prediction weights for each spectral band via 
adaptive linear prediction

• Entropy Coder

– Losslessly encodes the difference between predicted and 
actual sample values

– Adaptively adjusts to changing prediction accuracy

Predictor Entropy 
Coder

MSI/HSI image

predicted 
sample 
values compressed 

data

FL Compressor Overview
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• Purpose: Estimate a desired signal       from an input vector      using a linear estimator that 
is adaptively updated from previous results

• Compression of Estimate Error :
• Form estimate:
• Calculate estimation error:

is encoded in the compressed bitstream
• Update filter weights using the sign algorithm: 

where µ is the “adaptation step size” parameter
• Naive approach: use local neighborhood to construct        around 

with                    and

But performs poorly ….

previous 
three 
bands

current 
band current 

sample

3D neighborhood used 
for prediction. 

Compression Algorithm: Estimation
td tur

ˆ T
t t td w u=

r r
ˆ

t t te d d= −
te

1 sgn( )t t t tw w u eµ+ = −
r r r

0td s= tu =
r

0 19

The samples are 
labelled S , , SK

tur 0td s=

Cross-track

Band

Direction of flight



5

• Our solution: compute simple preliminary estimates       in each band at the 
spatial location of the sample being predicted, and subtract from the input 
samples.
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for prediction. 

Compression Algorithm: Local Mean Subtraction
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• Sign algorithm is used for weight adaptation
• Estimation error is encoded using Golomb power-of-2 codes
• Dataset is divided into parts (32 lines each), which are 

compressed independently. This provides some error 
containment.

• Each spectral band has its own prediction weights, 
maintained independently of the prediction weights for other 
spectral bands

Compression Algorithm: Implementation
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Compare our “Fast lossless” compression algorithm with:
• ICER-3D: a 3-D-wavelet-based compressor which is the 

state-of-the-art (ICER-2D is used on both Spirit and 
Opportunity MER rovers)

• Rice/USES (GSFC): algorithm used in USES chip, with the 
multispectral predictor option.

• JPEG-LS: is most efficient for 2D and is applied to the 
spectral bands independently

Other Methods:
• Differential JPEG-LS: JPEG-LS applied to the differences between the successive spectral bands
• SLSQ and SLSQ-OPT: two versions of Spectral-oriented Least Squares (SLSQ) [Rizzo et al., 2005]. 

Algorithms with complexity roughly similar to that of ours.
• 3-D CALIC: a nontrivial extension of the basic (2-D) CALIC algorithm to multispectral imagery. More 

complex.
• M-CALIC: multiband CALIC, another extension of CALIC to multispectral imagery. More complex.
• ASAP: Adaptive Selection of Adaptive Predictors [Aiazzi et al., 2001]; more computationally intensive than 

any of the other compressors in the tables

Compression Algorithm: Other Methods
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AVIRIS data sets represent different scenes

Comparison using Aviris Data Sets Test Bed
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Tests using 19 uncalibrated AVIRIS data sets:
• original sample size: 12 bits/sample 
• data size: (614 × 512) pixels × 224 bands 

Methods:
JPEG-LS: is most efficient for 2D; GSFC/USES use chip; ICER-3D SOA (ICER-2D MER rovers)

Compressor rate 
(bits/sample)

JPEG-LS (2D) 4.73
GSFC/USES 
Multispectral 3.89

ICER-3D 3.23

Fast Lossless 2.81

Compression performance averaged 
over 19 uncalibrated AVIRIS 
hyperspectral test data sets.

JPEG-LS 
(LOCO) (2D)

GSFC/USES (3D)

ICER-3D

Fast Lossless

About 40% lower bit 
rate than state-of-
the-art 3D approach 
(GSFC/USES).

Comparison for raw AVIRIS Data

Compression Gain
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• Performance: outstanding compression effectiveness 

• Robust; requires no training data or other specific information about the 
nature of the spectral bands for a fixed instrument dynamic range

• Simple: well-suited for implementation on FPGA hardware and easily 
parallelizable

• Low computational complexity.  required operations per sample are:

– 6 integer multiplications

– 25 integer addition, subtraction, or bit shift operations

– Golomb coding operations

• Modest memory requirement: enough to hold one spatial-spectral slice 
of the data (e.g., ≤650 Kbytes for AVIRISng data with 481 bands and 640 
samples/line)

• Instrument: well-suited to push broom instruments

Compression Algorithm Features
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JPL Lossless Data Compression is a CCSDS Standard 

The Consultative Committee for Space 
Data Systems (CCSDS) Multispectral & 
Hyperspectral Data Compression working 
group has adopted the FL compressor as 
international standard CCSDS-123.0-B-1

FL verification software has demonstrated 
outstanding performance on all of the 
myriad airborne and spaceborne imagers 
represented in the CCSDS test data set:
• Hyperspectral imagers: 

AVIRIS, Hyperion, SFSI, CASI, 
M3, CRISM

• Ultraspectral sounders: 
AIRS, IASI

• Multispectral imagers: 
MODIS, MSG, PLEIADES, 
VEGETATION, SPOT5
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FL FPGA: PRISM & AVIRISng

FMC-CLINK-MINI

Real-time aircraft onboard compression
• Implemented pushbroom FL compressor on a COTS 

Virtex 6. Compresses one sample every clock cycle, a 
speed of 40 MSample/sec.

• Implementation tested via Alpha-Data ADPE-XRC-6T 
which includes

– Xilinx Virtex-6 LX240T
– two 256MBytes DRAMs (32bits  data word, 3.2GBytes/sec 

per bank)
– PCIe x4 Gen2 (500MBytes/sec per lane).

• PRISM  and AVIRISng HSI image data transferred in 
real-time (60MBytes/sec) to the Virtex-6 via Alpha-Data 
FMC-CLINK-MINI camera link board, compressed on 
the Virtex-6 and transferred through PCIe to a 1GBytes 
SSD drive configured as RAID0 (500MBytes/sec)

ADPE-XRC-6T/LX240T-3

PRISM HSI PRISM HSI Support Equipment
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Camera Link interface Camera Link Interface

Custom App (JPL)
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OCP Interface 
Mux SDRAM #2

DDR bank#2 SDRAM 512MBytes 32bits; 
3.2GB/sec

DDR bank #1 SDRAM 512MBytes 
32bits; 3.2 GB/sec

FL FPGA Architecture
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SSD
1 TB
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Compr-
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Alpha-data FMC-CLINK
CameraLink
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Virtex6-LX240T-3

Alpha-Data ADPE-XRC-6T

IMU/GPS

Host

RAM

acquisition

transpose

Compression

DMA Bank#1 transfer

DMA Bank#2 transfer

Drivers

Software
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FL FPGA Resource Utilization – Virtex6

Available Used Utilization
All

Utilization 
Compressor

Utilization Virtex5 
Compressor (estimate)

Slice Register (Flip-Flop) 301,440 37,284 12% 4% 8%

Slice Look-up-table (LUTs) 150,720 37,374 24% 8% 8%

Fully used LUT-Flip Flop pairs 50,693 19,105 38% 13% 26%

Block RAM/FIFO 416 108 25% 12% 12%

DSP 48eS 768 6 1% 1% 1%

Device Utilization Virtex6-LX240T-3 (Compressor and Interface)

Device Utilization SDRAM (AVIRISng) 
Available Used Utilization

SDRAM Bank#1 (2 segments) 256 MBytes 40 MBytes 20 %

SDRAM Bank#2 (3 segments) 256 MBytes 60 MBytes 24 %

Block Critical Path Timing

Synchronization frames with IMU/GPS <25ns

Transpose BIP to BIL <10ns

Predictor 12.070 ns

Entropy Encoder 10.029 ns

Packer 7.377 ns

Timing: Critical Path 

The implementation compresses one sample every clock cycle, 
which results in a speed of 40 MSample/sec
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Comparison during airbone AVIRISng mission (June 2014)
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Comparison during airborne AVIRISng mission (June 2014)
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17

FLEX Compressor Block Diagram

compressed 
data

sample 
value

predicted 
sample 
value

prediction 
error

quantization

Predictor

Entropy 
Coder

Q-1

Q

Z-1

FLEX compresses data by passing Quantized Prediction Residuals 
through an Entropy Coder:
• The better the predictor, the lower the entropy of the prediction 

residuals.
• The quantizer allows further lowering of this entropy at a cost of inexact 

reconstruction from the compressed data (lossy compression).
• The entropy coder losslessly encodes quantized prediction residuals, 

producing compressed bits at a rate approximating the entropy of the 
quantized prediction residuals.

Fast Lossless Extended (FLEX):  lossless & near-lossless hyperspectral 
data compressor



18

FLEX Algorithm Advantages

• FLEX’s compression vs. transform-based compression 
approaches (e.g., wavelet-based JPEG2000 or DCT-based 
JPEG):
– FLEX achieves higher compression when operating at high-fidelity.
– FLEX’s implementation approach has substantially lower complexity.

• FLEX’s predictor is specifically tailored to exploit the 3D 
spectral/spatial structure of HSI data.  
– This distinguishes FLEX from general-purpose image compressors 

(e.g., JPEG2000, JPEG, JPEG-LS) not designed specifically for HSI 
data.

• FLEX’s quantizer provides a quantifiable bound on the 
maximum reconstruction error in each sample when lossy
compression is used.
– In contrast, transform-based compression approaches may distort relevant 

image features locally by an unquantifiable extent because they generally 
control reconstruction error only in a mean square error (MSE) sense.

18
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Comparison during airborne AVIRISng mission (June 2014)
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Alpha-Data ADM-XRC-7V1/VX690T-3 on ADC-PCIe-XMC carrier board  

FLEX FPGA Platform Block Diagram 

FPGA Virtex7/VX690T-3

Xeon CPU

PCIe
Gen2
X4
1.5 GB/sec

SSD (1 TB
0.3GB/s) (raw/
compressed)

RAID0

Host

RAM

Drivers

Software:
• Compute 

statistics
• Convert to 

integer format
• Convert to BIP

DDR3 bank #1 
SDRAM 1GBytes 
32bits; 6.4GB/sec

DDR3 bank #2 
SDRAM 1GBytes 
32bits; 6.4GB/sec

DDR3 bank #3 
SDRAM 1GBytes 
32bits; 6.4GB/sec

DDR3 bank #4 
SDRAM 1GBytes 
32bits; 6.4GB/sec

Camera Link
Simulator
0.15 GB/sec

• FLEX FPGA framework provides 
a platform to integrate FLEX 
Intellectual Property (IP) core 
with Peripheral Component 
Interconnect Express (PCIe) and 
synchronous dynamic random 
access memory (SDRAM)

• FLEX Software and FPGA are 
integrated into Alpha Data 
framework providing PCIe and 
SDRAM interface compatible 
with other HW platforms

• CameraLink simulator is used for 
testing FLEX IP core 
independent of the software
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FPGA-Software Overview

• FLEX Application Software decomposes HSI image into a set of segments (between 32 and 64 lines 
each) which are passed on to the FLEX hardware API layer through a C interface.

• FLEX hardware API handles configuration and interaction with FPGA card
• The scheduler queues the segments from the application as a set of jobs to be executed on the 

available FLEX IP cores in the FPGA. 
• The scheduler manages a set of workers (proportional to the number of cores in the FPGA design). 

Each worker is assigned a core to use in the FPGA. The scheduler assigns the idle worker a segment 
in the queue to compress on the FPGA. 

• The worker handles the data transfer to the FPGA, triggering a FLEX core to execute, and acquiring 
compressed data back from the FPGA.

• FLEX FPGA design compresses in parallel up to 15 segments at a time. Each FLEX IP core:
• Works independently on the data assigned by the FLEX worker. This data is stored in the SDRAM 

banks directly attached to the FPGA. 
• Uploads and downloads intermediary data to/from its own FPGA SDRAM partition. 
• Downloads compressed data in FPGA SDRAM and alerts its FLEX worker that the job is done. 

Input Raw Image
(Solid State Drive)

Scheduler
(Manages queue of 

segments)

FLEX worker 0

FLEX worker 1

...

FPGA 
Interface 

Abstraction

(API, 
Drivers, PCIe 
bridge, DMA 

engines)

FPGA design
(with 15 FLEX cores)

Output 
Compressed Data

(Solid State Drive)
FLEX worker 29

SDRAM SDRAM

SDRAM SDRAM

Software Hardware
FLEX API C/C++

JPL FLEX Console
or

FLEX V1 Application

Software
FLEX Application FPGA + Memory + PCIe Bridge

OS/Host
Drivers
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Software Layers: FLEX & ADB3 API
FLEX hardware API and FPGA IP cores are based on Alpha 
Data framework which provides software Application 
Programming Interface (API), Drivers, FPGA Memory and PCIe
interfaces.

• FLEX hardware API performs FLEX specific work.

– CFLEXCard: On configuration of FPGA, it will probe the FPGA for 
FLEX compression cores and initialize itself (creating a set of 
CFLEXWorker class instances) to support the available FLEX cores in 
the FPGA.

– CFLEXWorker: manages a single segment of data at a time, sharing 
a pool of memory sections and FLEX core instances in the FPGA, 
sharing access to the FPGA card though the CFLEXCard class that 
created them.  CFLEXWorker is managed by a CFLEXScheduler
instance.

– CFLEXScheduler: defines a list of compression tasks and executes 
them.  It splits the tasks between the available CFLEXWorkers (and 
thus the FLEX cores inside the FPGA). 

• Hardware Abstraction Layer of Alpha Data Bridge Generation 3 
(ADB3) API: Provides separation between Alpha Data ADB3 API and 
FLEX API.  This allows the hardware layer to be migrated to other 
hardware, or be replaced with a pure software model for development of 
software integration.

– Main class CDataCard provides

• FPGA configuration.

• FPGA memory model description.

• FPGA memory space interaction, including DMA and Direct Slave: 
UploadHostData / DownloadHostData, Read8/Write8, 
…Read64/Write64 etc.
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Hardware

Firmware

 Alpha Data
Firmware



23

FLEX FPGA Timing

Assumptions:
• 32 frames/segment, 480x640 samples/frame, 32bits/sample (40 MBytes/segment), 15 segments
• Computes Statistics of full image on host computer in 54ms 
• Upload 15 segments from host Memory to FPGA SDRAM, compress and download 15 segments from 

FPGA SDRAM to host computer

Compress 147 MSamples (Integer Image) in < 10 sec
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FLEX FPGA Performance 15-Cores
Execution time of the FLEX Platform IP 15-cores for 147 MSamples:  (1) the Data flow is limited by PCIe interface used for HOST-SDRAM data transfer 
during the upload of the uncompressed data; (2) FPGA implementation use only 13% of the SDRAM  data bandwidth; (3) FPGA is 41% faster than SW on 8 
cores 3.6GHz Xeon processors using 10 times less power

24

DMA Transfer between CPU and FPGA DDR

FGPA DDR transfer during upload/download and 
compression

Data Compression Rate & Power FPGA:
FPGA Compression Engine: 81.5 MSamples/sec
TOTAL (HDD+Statistics+SZvault+FPGA): 64 MSamples/sec
Power: 11.25 Watt
Data Compression Rate & Power SW
SW Compression Engine: 57.73 MSamples/sec
TOTAL (HDD+Statistics+SZvault+SW): 50 MSamples/sec
Power: 130 Watt

Data Transfer > PCIe Gen2 x4 data 
bandwidth of 1,400 Mbytes/sec

Data Transfer << DDR data 
bandwidth of 18,000 Mbytes/sec

Actions of each of the 15 cores on the FPGA
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FLEX FPGA performance 15-Cores with Large Image
Compression of 521 MSamples: (1) pipeline of compression and upload/download increases data rate to 95 MSamples/sec or 64% faster than SW; (2) 
memory rotation distributes the DDR memory load reducing memory latency; (3) limited PCIe data bandwidth (1.5 GBytes/sec) has no effect on the data rate 
(pipeline data compression & data transfer); (4) the HOST processors can do real-time acquisition while simultaneously FPGA performs real-time data 
compression.

25

DMA transfer between CPU and FPGA DDR

Data Compression Rate - FPGA:
• FPGA Compression Engine: 95 MSamples/sec
• Total (HDD+Statistics+SZvault+FPGA): 73 MSamples/sec

FPGA 
Compress 

&
CPUs 
sleep

SSD 
write

SSD
read

FGPA DDR transfer during upload/download 
and compression

Data Transfer > PCIe Gen2 x4 data 
bandwidth of 1,400 Mbytes/sec

Data Transfer << DDR data 
bandwidth of 18,000 Mbytes/sec

HOST CPU Cores Actions

Actions 
FPGA
cores
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FLEX FPGA Performance 15-cores Summary

Advantages of the FLEX FPGA implementation :

1. Pipelining data download/upload with data compression

a. Data rate increases linearly with the number of cores (no memory bottleneck)

b. Data rate increases more for large image

c. Eliminates the effect of limited PCIe data bandwidth

2. Can provide up to a 116 MSamples/sec compression data rate in real-time data streaming.  Data rate is 
limited only by FPGA predictor module which uses 26 Clks/sample at 200 MHz

3. Dedicated FPGA processor can relieve main CPU to run other essential tasks.

26
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FLEX Virtex7-XC7VX690T Resource utilization, 1 and 15 cores

 Slice 
Registers 

(Flip-
Flop) Slice LUT 

Slice LUT 
as Memory 
(1 LUT is 
62 bits) 

Block RAM 
Tile 

(36kBit 
each) 

DSP48 
 

Worst 
Case 

Timing 
Slack Power 

Available 
866,400 433,200 

174,200 
1.361 

Mbytes 

1470 
6.6 Mbytes 3600   

Used, Arithmetic 
for 1-core 9,158 13,134 354 36 31 N/A N/A 

 
Used, Arithmetic 
for 1-core 
(Percent) 

1.05% 3.03% 0.20% 2.41% 0.86%   

Used, Full Design 
for 1 core 82,056 73,514 19,164 

149 Kbytes 
60 

270 Kbytes 31 0.374ns 7.84W 

Used, Full Design 
for 1 core 
(Percent) 

9.47% 16.96% 11.00% 4.04% 0.86%   

Used, Full Design 
for 15 cores 260,750 297,807 52,300 

405 Kbytes 
556 

2.5 Mbytes 465 0.031ns 11.40W 

Used, Full Design 
for 15 cores 
(Percent) 

30.09% 68.74% 30.02% 37.85% 12.91%   

 

Hardware Implementation

The Table provides the resource utilization of the Virtex-7 for 3 design configurations:
• The “arithmetic for 1-core” implements a single data compression core writing and reading uncompressed and 

compressed data on SDRAM/DDR memory and interacting with the software through Register and Interrupt 
controllers.

• The “full design for 1-core” implements the arithmetic for 1-core and the FPGA glue logic needed to 
communicate with the Software through the Peripheral Component Interconnect Express (PCIe)

• The “full design for 15 cores” implements 15 arithmetic for 1-core and the glue logic needed to communicate with 
the Software to write/read uncompressed and compressed data of 15 cores simultaneously to/from 
DDR/SDRAM memory.
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Summary
We presented an FPGA implementation of a novel hyperspectral 

lossless data compression algorithm and its flight demonstration: 
JPL adaptive Fast Lossless (FL) compressor. The implementation 
targets the Xilinx Virtex 7 FPGAs and provides an acceleration of 
at least 7 times the software implementation on a single core of 
the Intel® Hex Core™ i7, making the use of this compressor 
practical for satellites and planet orbiting missions with 
hyperspectral instruments. 

We presented an FPGA/SW implementation of the lossless & near-
lossless hyperspectral (FLEX) data compression algorithm to 
increase compression ratio needed for large Focal Plane Array 
(FPA). The implementation targets the Xilinx Virtex FPGAs and 
accommodate raw, radiance and reflectance data. 

Future development will explore new hardware technologies such 
as System-on-the-Chip (SoC) to embed the compression next to 
the FPA ROI.
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