
Jet Propulsion Laboratory
California Institute of Technology

FPGA Implementation of
Lossless and Lossy

Compression of Space-based
Multispectral and

Hyperspectral Imagery

Didier Keymeulen

2

• Overview of Fast Lossless (FL) Hyperspectral Data

Compression Algorithm

• Fast Lossless FPGA Implementation and Airborne

Demonstrations

• Overview of lossless & near-lossless Hyperspectral

Data Compression (FLEX)

• Fast Lossless Extended (FLEX) SW/FPGA

implementation and Data Throughput Performance

Outline

3

Fast Lossless (FL) MSI/HSI Compressor

previous
three
bands

current
spectral

band current
sample

3D neighborhood used
for prediction.

Approach: Predictive compression, encoding samples one-at-a-time

• Predictor

– Computes predicted sample value from previously encoded
nearby samples (prediction neighborhood illustrated at right)

– Adaptively adjusts prediction weights for each spectral band via
adaptive linear prediction

• Entropy Coder

– Losslessly encodes the difference between predicted and
actual sample values

– Adaptively adjusts to changing prediction accuracy

Predictor Entropy
Coder

MSI/HSI image

predicted
sample
values compressed

data

FL Compressor Overview

Cross-track 2

Band1

Direction of flight 3

4

• Purpose: Estimate a desired signal from an input vector using a linear estimator that
is adaptively updated from previous results

• Compression of Estimate Error :
• Form estimate:
• Calculate estimation error:

is encoded in the compressed bitstream
• Update filter weights using the sign algorithm:

where µ is the “adaptation step size” parameter
• Naive approach: use local neighborhood to construct around

with and

But performs poorly ….

previous
three
bands

current
band current

sample

3D neighborhood used
for prediction.

Compression Algorithm: Estimation
td tur

ˆ T
t t td w u=

r r
ˆ

t t te d d= −
te

1 sgn()t t t tw w u eµ+ = −
r r r

0td s= tu =
r

0 19

The samples are
labelled S , , SK

tur 0td s=

Cross-track

Band

Direction of flight

5

• Our solution: compute simple preliminary estimates in each band at the
spatial location of the sample being predicted, and subtract from the input
samples.

previous
three
bands

current
band current

sample

3D neighborhood used
for prediction.

Compression Algorithm: Local Mean Subtraction

is%

tur 0 0td s s= − %

ˆ T
t t td w u=

r r ˆ
tt tde d= −to compute the estimate and the estimate error Cross-track

Band

Direction
of flight

6

• Sign algorithm is used for weight adaptation
• Estimation error is encoded using Golomb power-of-2 codes
• Dataset is divided into parts (32 lines each), which are

compressed independently. This provides some error
containment.

• Each spectral band has its own prediction weights,
maintained independently of the prediction weights for other
spectral bands

Compression Algorithm: Implementation

7

Compare our “Fast lossless” compression algorithm with:
• ICER-3D: a 3-D-wavelet-based compressor which is the

state-of-the-art (ICER-2D is used on both Spirit and
Opportunity MER rovers)

• Rice/USES (GSFC): algorithm used in USES chip, with the
multispectral predictor option.

• JPEG-LS: is most efficient for 2D and is applied to the
spectral bands independently

Other Methods:
• Differential JPEG-LS: JPEG-LS applied to the differences between the successive spectral bands
• SLSQ and SLSQ-OPT: two versions of Spectral-oriented Least Squares (SLSQ) [Rizzo et al., 2005].

Algorithms with complexity roughly similar to that of ours.
• 3-D CALIC: a nontrivial extension of the basic (2-D) CALIC algorithm to multispectral imagery. More

complex.
• M-CALIC: multiband CALIC, another extension of CALIC to multispectral imagery. More complex.
• ASAP: Adaptive Selection of Adaptive Predictors [Aiazzi et al., 2001]; more computationally intensive than

any of the other compressors in the tables

Compression Algorithm: Other Methods

8

AVIRIS data sets represent different scenes

Comparison using Aviris Data Sets Test Bed

Moffett Field
(vegetation,

urban, water)

Cuprite
(geological
features)

Jasper
Ridge

(vegetation)

Low Altitude
(high spatial
resolution)

Lunar Lake
(calibration)

9

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

data set index

Tests using 19 uncalibrated AVIRIS data sets:
• original sample size: 12 bits/sample
• data size: (614 × 512) pixels × 224 bands

Methods:
JPEG-LS: is most efficient for 2D; GSFC/USES use chip; ICER-3D SOA (ICER-2D MER rovers)

Compressor rate
(bits/sample)

JPEG-LS (2D) 4.73
GSFC/USES
Multispectral 3.89

ICER-3D 3.23

Fast Lossless 2.81

Compression performance averaged
over 19 uncalibrated AVIRIS
hyperspectral test data sets.

JPEG-LS
(LOCO) (2D)

GSFC/USES (3D)

ICER-3D

Fast Lossless

About 40% lower bit
rate than state-of-
the-art 3D approach
(GSFC/USES).

Comparison for raw AVIRIS Data

Compression Gain

bi
ts

 /
sa

m
pl

e

10

• Performance: outstanding compression effectiveness

• Robust; requires no training data or other specific information about the
nature of the spectral bands for a fixed instrument dynamic range

• Simple: well-suited for implementation on FPGA hardware and easily
parallelizable

• Low computational complexity. required operations per sample are:

– 6 integer multiplications

– 25 integer addition, subtraction, or bit shift operations

– Golomb coding operations

• Modest memory requirement: enough to hold one spatial-spectral slice
of the data (e.g., ≤650 Kbytes for AVIRISng data with 481 bands and 640
samples/line)

• Instrument: well-suited to push broom instruments

Compression Algorithm Features

11

JPL Lossless Data Compression is a CCSDS Standard

The Consultative Committee for Space
Data Systems (CCSDS) Multispectral &
Hyperspectral Data Compression working
group has adopted the FL compressor as
international standard CCSDS-123.0-B-1

FL verification software has demonstrated
outstanding performance on all of the
myriad airborne and spaceborne imagers
represented in the CCSDS test data set:
• Hyperspectral imagers:

AVIRIS, Hyperion, SFSI, CASI,
M3, CRISM

• Ultraspectral sounders:
AIRS, IASI

• Multispectral imagers:
MODIS, MSG, PLEIADES,
VEGETATION, SPOT5

1212

FL FPGA: PRISM & AVIRISng

FMC-CLINK-MINI

Real-time aircraft onboard compression
• Implemented pushbroom FL compressor on a COTS

Virtex 6. Compresses one sample every clock cycle, a
speed of 40 MSample/sec.

• Implementation tested via Alpha-Data ADPE-XRC-6T
which includes

– Xilinx Virtex-6 LX240T
– two 256MBytes DRAMs (32bits data word, 3.2GBytes/sec

per bank)
– PCIe x4 Gen2 (500MBytes/sec per lane).

• PRISM and AVIRISng HSI image data transferred in
real-time (60MBytes/sec) to the Virtex-6 via Alpha-Data
FMC-CLINK-MINI camera link board, compressed on
the Virtex-6 and transferred through PCIe to a 1GBytes
SSD drive configured as RAID0 (500MBytes/sec)

ADPE-XRC-6T/LX240T-3

PRISM HSI PRISM HSI Support Equipment

13

Camera Link interface Camera Link Interface

Custom App (JPL)

Resync
Pass

through

Camera Link &
OCP interface

PCIe Interface
&

Target Wrap

OCP Interface
Mux SDRAM #1

FL
Compression

Control &
Status

Hyper-
spectral
source

Hyper-
spectral

sink

BIL to BIP
Formatting

OCP Interface
Mux SDRAM #2

DDR bank#2 SDRAM 512MBytes 32bits;
3.2GB/sec

DDR bank #1 SDRAM 512MBytes
32bits; 3.2 GB/sec

FL FPGA Architecture

Xeon
CPU PCIe

Gen2
X4
0.5GB/s

SSD
1 TB

0.5GB/s
(raw

Compr-
essed)

Alpha-data FMC-CLINK
CameraLink
640by285,165Hz,60MB/s
BIL; 16 bits/sample

Virtex6-LX240T-3

Alpha-Data ADPE-XRC-6T

IMU/GPS

Host

RAM

acquisition

transpose

Compression

DMA Bank#1 transfer

DMA Bank#2 transfer

Drivers

Software

14

FL FPGA Resource Utilization – Virtex6

Available Used Utilization
All

Utilization
Compressor

Utilization Virtex5
Compressor (estimate)

Slice Register (Flip-Flop) 301,440 37,284 12% 4% 8%

Slice Look-up-table (LUTs) 150,720 37,374 24% 8% 8%

Fully used LUT-Flip Flop pairs 50,693 19,105 38% 13% 26%

Block RAM/FIFO 416 108 25% 12% 12%

DSP 48eS 768 6 1% 1% 1%

Device Utilization Virtex6-LX240T-3 (Compressor and Interface)

Device Utilization SDRAM (AVIRISng)
Available Used Utilization

SDRAM Bank#1 (2 segments) 256 MBytes 40 MBytes 20 %

SDRAM Bank#2 (3 segments) 256 MBytes 60 MBytes 24 %

Block Critical Path Timing

Synchronization frames with IMU/GPS <25ns

Transpose BIP to BIL <10ns

Predictor 12.070 ns

Entropy Encoder 10.029 ns

Packer 7.377 ns

Timing: Critical Path

The implementation compresses one sample every clock cycle,
which results in a speed of 40 MSample/sec

15
Soda LakeKingsburg SierraSan Joaquin

Comparison during airbone AVIRISng mission (June 2014)

16

Comparison during airborne AVIRISng mission (June 2014)

3.00

3.25

3.50

3.75

4.00

4.25

Kingsburg,
Agriculture Field

(13,000 ft)

San Joaquin (8,000
ft)

Sierra (17,500 ft) Soda Lake (5,000 ft) Fresno, Agriculture
Field (10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets
original sample size: 14 bits/sample
data size: 640 cross track by 481 bands

Fast Lossless
12bits/sample

Fast Lossless
13bits/sample

17

17

FLEX Compressor Block Diagram

compressed
data

sample
value

predicted
sample
value

prediction
error

quantization

Predictor

Entropy
Coder

Q-1

Q

Z-1

FLEX compresses data by passing Quantized Prediction Residuals
through an Entropy Coder:
• The better the predictor, the lower the entropy of the prediction

residuals.
• The quantizer allows further lowering of this entropy at a cost of inexact

reconstruction from the compressed data (lossy compression).
• The entropy coder losslessly encodes quantized prediction residuals,

producing compressed bits at a rate approximating the entropy of the
quantized prediction residuals.

Fast Lossless Extended (FLEX): lossless & near-lossless hyperspectral
data compressor

18

FLEX Algorithm Advantages

• FLEX’s compression vs. transform-based compression
approaches (e.g., wavelet-based JPEG2000 or DCT-based
JPEG):
– FLEX achieves higher compression when operating at high-fidelity.
– FLEX’s implementation approach has substantially lower complexity.

• FLEX’s predictor is specifically tailored to exploit the 3D
spectral/spatial structure of HSI data.
– This distinguishes FLEX from general-purpose image compressors

(e.g., JPEG2000, JPEG, JPEG-LS) not designed specifically for HSI
data.

• FLEX’s quantizer provides a quantifiable bound on the
maximum reconstruction error in each sample when lossy
compression is used.
– In contrast, transform-based compression approaches may distort relevant

image features locally by an unquantifiable extent because they generally
control reconstruction error only in a mean square error (MSE) sense.

18

19

Comparison during airborne AVIRISng mission (June 2014)

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

Kingsburg,
Agriculture Field

(13,000 ft)

San Joaquin (8,000
ft)

Sierra (17,500 ft) Soda Lake (5,000 ft) Fresno, Agriculture
Field (10,000 ft)

C
om

pr
es

si
on

 R
at

io

Data Sets
original sample size: 14 bits/sample
data size: 640 cross track by 481 bands
original sample size: 14 bits/sample
data size: 640 cross track by 481 bands

Fast Lossless
12bits/sample

Fast Lossless
13bits/sample

Fast Lossy 13bits/sample (Max Error = 1)

20

Alpha-Data ADM-XRC-7V1/VX690T-3 on ADC-PCIe-XMC carrier board

FLEX FPGA Platform Block Diagram

FPGA Virtex7/VX690T-3

Xeon CPU

PCIe
Gen2
X4
1.5 GB/sec

SSD (1 TB
0.3GB/s) (raw/
compressed)

RAID0

Host

RAM

Drivers

Software:
• Compute

statistics
• Convert to

integer format
• Convert to BIP

DDR3 bank #1
SDRAM 1GBytes
32bits; 6.4GB/sec

DDR3 bank #2
SDRAM 1GBytes
32bits; 6.4GB/sec

DDR3 bank #3
SDRAM 1GBytes
32bits; 6.4GB/sec

DDR3 bank #4
SDRAM 1GBytes
32bits; 6.4GB/sec

Camera Link
Simulator
0.15 GB/sec

• FLEX FPGA framework provides
a platform to integrate FLEX
Intellectual Property (IP) core
with Peripheral Component
Interconnect Express (PCIe) and
synchronous dynamic random
access memory (SDRAM)

• FLEX Software and FPGA are
integrated into Alpha Data
framework providing PCIe and
SDRAM interface compatible
with other HW platforms

• CameraLink simulator is used for
testing FLEX IP core
independent of the software

mptl_bridge_if

clink_adb3
(for test

only)

blk_mem_if

adb3_ocp_mux_n
b

(Bank1)

adb3_ocp_mux_n
b

(Bank2)

adb3_ocp_mux_n
b

(Bank3)

adb3_ocp_mux_n
b

(Bank4)

camera_link_ocp_inter
face

(for test only)

clink_custom_app
(for test only)

adb3_ocp_l_splite
q

adb3_ocp_l_splite
q

ocp_interupt_contro
ller

blk_clocks

direct_slave_r32

dma_channels

(0) (1) (2) (3)

ocp_registers
(1) (0)

(2) (3)registers_clink(1)

(0)

(0) (1) (2) (3)
compression_memif

im
ag

e_
m

em
if

(0) (1) (2) (3)ram_if

clink_in

clink_out

cam_data

cam_data_custom

mem_add_out; mem_ctrl_out; mem_data_inout

mptl
mptl_sb

PCIe DMA

Camera

Compression/Memory

PCIe Register and IRQ

PCIe Blocks
CameraLink

Memory
FLEX core

ad
b3

_o
cp

_m
e

ga
m

ux

Stub FLEX
IP Core#8
(FLEX
compressor
)Stub FLEX

IP Core#1
(FLEX
compressor
)

Ad
dr

_s
pl

it_
eq

in
t_

co
lle

c
t

21

FPGA-Software Overview

• FLEX Application Software decomposes HSI image into a set of segments (between 32 and 64 lines
each) which are passed on to the FLEX hardware API layer through a C interface.

• FLEX hardware API handles configuration and interaction with FPGA card
• The scheduler queues the segments from the application as a set of jobs to be executed on the

available FLEX IP cores in the FPGA.
• The scheduler manages a set of workers (proportional to the number of cores in the FPGA design).

Each worker is assigned a core to use in the FPGA. The scheduler assigns the idle worker a segment
in the queue to compress on the FPGA.

• The worker handles the data transfer to the FPGA, triggering a FLEX core to execute, and acquiring
compressed data back from the FPGA.

• FLEX FPGA design compresses in parallel up to 15 segments at a time. Each FLEX IP core:
• Works independently on the data assigned by the FLEX worker. This data is stored in the SDRAM

banks directly attached to the FPGA.
• Uploads and downloads intermediary data to/from its own FPGA SDRAM partition.
• Downloads compressed data in FPGA SDRAM and alerts its FLEX worker that the job is done.

Input Raw Image
(Solid State Drive)

Scheduler
(Manages queue of

segments)

FLEX worker 0

FLEX worker 1

...

FPGA
Interface

Abstraction

(API,
Drivers, PCIe
bridge, DMA

engines)

FPGA design
(with 15 FLEX cores)

Output
Compressed Data

(Solid State Drive)
FLEX worker 29

SDRAM SDRAM

SDRAM SDRAM

Software Hardware
FLEX API C/C++

JPL FLEX Console
or

FLEX V1 Application

Software
FLEX Application FPGA + Memory + PCIe Bridge

OS/Host
Drivers

22

Software Layers: FLEX & ADB3 API
FLEX hardware API and FPGA IP cores are based on Alpha
Data framework which provides software Application
Programming Interface (API), Drivers, FPGA Memory and PCIe
interfaces.

• FLEX hardware API performs FLEX specific work.

– CFLEXCard: On configuration of FPGA, it will probe the FPGA for
FLEX compression cores and initialize itself (creating a set of
CFLEXWorker class instances) to support the available FLEX cores in
the FPGA.

– CFLEXWorker: manages a single segment of data at a time, sharing
a pool of memory sections and FLEX core instances in the FPGA,
sharing access to the FPGA card though the CFLEXCard class that
created them. CFLEXWorker is managed by a CFLEXScheduler
instance.

– CFLEXScheduler: defines a list of compression tasks and executes
them. It splits the tasks between the available CFLEXWorkers (and
thus the FLEX cores inside the FPGA).

• Hardware Abstraction Layer of Alpha Data Bridge Generation 3
(ADB3) API: Provides separation between Alpha Data ADB3 API and
FLEX API. This allows the hardware layer to be migrated to other
hardware, or be replaced with a pure software model for development of
software integration.

– Main class CDataCard provides

• FPGA configuration.

• FPGA memory model description.

• FPGA memory space interaction, including DMA and Direct Slave:
UploadHostData / DownloadHostData, Read8/Write8,
…Read64/Write64 etc.

Al
ph

a
Da

ta
 O

CP

Co
nt

ro
lle

r

Alpha Data O
CP

Controller

ADB3 API (multi-platform)

ADB3 Driver (Linux/VxWorks/Windows)

HAL - Hardware Abstraction Layer (Interfaces FLEX API to hardware)

FLEX Console Application

Diagnostic &
Performance

Functions

FLEX API (Extends HAL adding flex specific functionality)
CFLEXCard, CFLEXWorker, CFLEXScheduler

PCIe

FLEX IP Cores

Alpha Data ADB3 Bridge
Xilinx PCIe Core (Gen2.0 x4)

Bridge FPGA

Multiplex Packet Transport Link

Multiplex Packet Transport Link
Target FPGA

Alpha Data FPGA Card

SDRAM

SDRAM

SDRAM

SDRAM

Host Computer

Alpha Data Bridge Controller

Software model

FLEX V1 or other
Application

C++ API Interface C API Interface

IP Core and API
Test functions

Application

FLEX API

OS and Drivers

Hardware

Firmware

 Alpha Data
Firmware

23

FLEX FPGA Timing

Assumptions:
• 32 frames/segment, 480x640 samples/frame, 32bits/sample (40 MBytes/segment), 15 segments
• Computes Statistics of full image on host computer in 54ms
• Upload 15 segments from host Memory to FPGA SDRAM, compress and download 15 segments from

FPGA SDRAM to host computer

Compress 147 MSamples (Integer Image) in < 10 sec

D
M

A TO

FPG
A

SW
 C

om
pute Statistics

Software Action

FPGA
Compress

118ms

2384ms = 16x 149 ms

2271ms
217 ms 59 ms

H
ost W

rites C
om

pressed File to
H

D
D

FPGA Actions

28ms

Data Transfer1277ms

54 ms

149 ms

D
M

A TO

H
O

ST

8ms 8m
s

FPGA
Compress

FPGA
Compress

8ms8ms

8m
s

1806 ms

D
M

A TO

FPG
A

D
M

A TO

FPG
A

D
M

A TO

H
O

ST

D
M

A TO

H
O

ST

SW

H
EAD

E
R

SZvault

H
ost R

eads BIP Im
age from

H

ard D
rive

140
ms

8ms

SW

H
EAD

E
R

23

103m
s

17ms

FPGA
Actions

24

FLEX FPGA Performance 15-Cores
Execution time of the FLEX Platform IP 15-cores for 147 MSamples: (1) the Data flow is limited by PCIe interface used for HOST-SDRAM data transfer
during the upload of the uncompressed data; (2) FPGA implementation use only 13% of the SDRAM data bandwidth; (3) FPGA is 41% faster than SW on 8
cores 3.6GHz Xeon processors using 10 times less power

24

DMA Transfer between CPU and FPGA DDR

FGPA DDR transfer during upload/download and
compression

Data Compression Rate & Power FPGA:
FPGA Compression Engine: 81.5 MSamples/sec
TOTAL (HDD+Statistics+SZvault+FPGA): 64 MSamples/sec
Power: 11.25 Watt
Data Compression Rate & Power SW
SW Compression Engine: 57.73 MSamples/sec
TOTAL (HDD+Statistics+SZvault+SW): 50 MSamples/sec
Power: 130 Watt

Data Transfer > PCIe Gen2 x4 data
bandwidth of 1,400 Mbytes/sec

Data Transfer << DDR data
bandwidth of 18,000 Mbytes/sec

Actions of each of the 15 cores on the FPGA

25

FLEX FPGA performance 15-Cores with Large Image
Compression of 521 MSamples: (1) pipeline of compression and upload/download increases data rate to 95 MSamples/sec or 64% faster than SW; (2)
memory rotation distributes the DDR memory load reducing memory latency; (3) limited PCIe data bandwidth (1.5 GBytes/sec) has no effect on the data rate
(pipeline data compression & data transfer); (4) the HOST processors can do real-time acquisition while simultaneously FPGA performs real-time data
compression.

25

DMA transfer between CPU and FPGA DDR

Data Compression Rate - FPGA:
• FPGA Compression Engine: 95 MSamples/sec
• Total (HDD+Statistics+SZvault+FPGA): 73 MSamples/sec

FPGA
Compress

&
CPUs
sleep

SSD
write

SSD
read

FGPA DDR transfer during upload/download
and compression

Data Transfer > PCIe Gen2 x4 data
bandwidth of 1,400 Mbytes/sec

Data Transfer << DDR data
bandwidth of 18,000 Mbytes/sec

HOST CPU Cores Actions

Actions
FPGA
cores

26

FLEX FPGA Performance 15-cores Summary

Advantages of the FLEX FPGA implementation :

1. Pipelining data download/upload with data compression

a. Data rate increases linearly with the number of cores (no memory bottleneck)

b. Data rate increases more for large image

c. Eliminates the effect of limited PCIe data bandwidth

2. Can provide up to a 116 MSamples/sec compression data rate in real-time data streaming. Data rate is
limited only by FPGA predictor module which uses 26 Clks/sample at 200 MHz

3. Dedicated FPGA processor can relieve main CPU to run other essential tasks.

26

27

27

FLEX Virtex7-XC7VX690T Resource utilization, 1 and 15 cores

 Slice
Registers

(Flip-
Flop) Slice LUT

Slice LUT
as Memory
(1 LUT is
62 bits)

Block RAM
Tile

(36kBit
each)

DSP48

Worst
Case

Timing
Slack Power

Available
866,400 433,200

174,200
1.361

Mbytes

1470
6.6 Mbytes 3600

Used, Arithmetic
for 1-core 9,158 13,134 354 36 31 N/A N/A

Used, Arithmetic
for 1-core
(Percent)

1.05% 3.03% 0.20% 2.41% 0.86%

Used, Full Design
for 1 core 82,056 73,514 19,164

149 Kbytes
60

270 Kbytes 31 0.374ns 7.84W

Used, Full Design
for 1 core
(Percent)

9.47% 16.96% 11.00% 4.04% 0.86%

Used, Full Design
for 15 cores 260,750 297,807 52,300

405 Kbytes
556

2.5 Mbytes 465 0.031ns 11.40W

Used, Full Design
for 15 cores
(Percent)

30.09% 68.74% 30.02% 37.85% 12.91%

Hardware Implementation

The Table provides the resource utilization of the Virtex-7 for 3 design configurations:
• The “arithmetic for 1-core” implements a single data compression core writing and reading uncompressed and

compressed data on SDRAM/DDR memory and interacting with the software through Register and Interrupt
controllers.

• The “full design for 1-core” implements the arithmetic for 1-core and the FPGA glue logic needed to
communicate with the Software through the Peripheral Component Interconnect Express (PCIe)

• The “full design for 15 cores” implements 15 arithmetic for 1-core and the glue logic needed to communicate with
the Software to write/read uncompressed and compressed data of 15 cores simultaneously to/from
DDR/SDRAM memory.

28

Summary
We presented an FPGA implementation of a novel hyperspectral

lossless data compression algorithm and its flight demonstration:
JPL adaptive Fast Lossless (FL) compressor. The implementation
targets the Xilinx Virtex 7 FPGAs and provides an acceleration of
at least 7 times the software implementation on a single core of
the Intel® Hex Core™ i7, making the use of this compressor
practical for satellites and planet orbiting missions with
hyperspectral instruments.

We presented an FPGA/SW implementation of the lossless & near-
lossless hyperspectral (FLEX) data compression algorithm to
increase compression ratio needed for large Focal Plane Array
(FPA). The implementation targets the Xilinx Virtex FPGAs and
accommodate raw, radiance and reflectance data.

Future development will explore new hardware technologies such
as System-on-the-Chip (SoC) to embed the compression next to
the FPA ROI.

	Slide Number 1
	Outline
	Fast Lossless (FL) MSI/HSI Compressor
	Compression Algorithm: Estimation
	Compression Algorithm: Local Mean Subtraction
	Compression Algorithm: Implementation
	Compression Algorithm: Other Methods
	Comparison using Aviris Data Sets Test Bed
	Comparison for raw AVIRIS Data
	Compression Algorithm Features
	JPL Lossless Data Compression is a CCSDS Standard
	Slide Number 12
	FL FPGA Architecture
	FL FPGA Resource Utilization – Virtex6
	Slide Number 15
	Comparison during airborne AVIRISng mission (June 2014)
	Slide Number 17
	FLEX Algorithm Advantages
	Comparison during airborne AVIRISng mission (June 2014)
	FLEX FPGA Platform Block Diagram
	FPGA-Software Overview
	Software Layers: FLEX & ADB3 API
	FLEX FPGA Timing
	FLEX FPGA Performance 15-Cores
	FLEX FPGA performance 15-Cores with Large Image
	FLEX FPGA Performance 15-cores Summary
	Hardware Implementation
	Summary

