
Using Executable SysML
Models to Generate
System Engineering

Products
May 22, 2016, Robert Karban

Jet Propulsion Laboratory,
California Institute of Technology

© 2016 California Institute of Technology. Government sponsorship acknowledged.

Outline

by marian kamensky

CST

CST

CST

MBSE

• System Analysis, MBSE
• Executable Models
• Running Example: TMT
• ESEM
• OpenMBEE
• Summary

Who is Robert?
• Master in Computer Science (Austria)
• Senior Systems Architect at NASA’s JPL - USA

• MBSE, CAE, TMT, Europa
• Member of INCOSE
• Member of the OMG SysML Revision Task Force
• Formerly Control System/Software Engineer and

Architect at:
• Siemens Healthcare - Austria
• Alcatel - France
• CERN (LHC, LINAC, PS) –

Switzerland/France
• NRAO - USA
• European Southern Observatory (VLT,

ALMA, ELT) – Germany, Chile
• User of MagicDraw/SysML since 2007

Systems Analysis

• Carry out quantitative assessments of systems
in order to select and/or update the most
efficient system architecture and to generate
derived engineering data.

• System analysis provides a rigorous approach
to technical decision-making. It is used to
perform trade-off studies, and includes
modeling and simulation, cost analysis,
technical risks analysis, and effectiveness
analysis.

Requirements Verification

• A kind of systems analysis that assesses
whether a system design meets the objectives
and satisfies the constraints that are implied
by the system requirements

Model Based Systems Engineering

• MBSE is the formalized application of
modeling techniques to support system
requirements, design, analysis, verification,
validation and documentation activities

• MBSE expresses a system using a Systems
Modeling Language (SysML), a profile of UML

• MBSE is often applied with a method like
Object Oriented System Engineering Method
(OOSEM)

Project Question

• How to perform requirements verification on
systems models using vanilla SysML?

Proposed Approach

• An extension of OOSEM named Executable
Systems Engineering Method (ESEM)

• ESEM produces executable SysML models that
verify requirements

• ESEM provides a set of analysis patterns that
are specified with various SysML structural,
behavioral and parametric diagrams

Executable Models

• Most SysML models today are created for
documentation purposes
– The focus is on syntax and notation

• Some SysML models are created to gain
system understanding, explore and validate
desirable or undesirable behaviors of a system
– The focus is on semantics

Model Execution

• Executable SysML models are defined with a
subset of the language with well defined
execution semantics
– The subset is called Foundational UML (fUML)
– SysML inherits the fUML subset from UML

• SysML models are executed with the help of
an execution, or simulation engine
– Ex.: MagicDraw’s CST
– Ex.: Papyrus’s MOKA

Cameo Simulation Toolkit (CST)

• A plugin to MagicDraw SysML modeling tool
• A simulation platform based on fUML and

plugs in additional execution engines
– State Chart XML (SCXML)
– Scripting for the Java Platform (JSR 223)
– Precise Semantics of Composite Structures (PSCS)

Object Oriented System Engineering
Method

Defines the architecture in terms of:
• Domain: the context of the solution

– Enterprise: the ecosystem of the solution
• System of Interest: the solution being specified

– Black Box: externally visible specification
– Conceptual: white box functional specification
– Physical: white box realization specification

Running Example
• Thirty Meter Telescope (TMT) http://www.tmt.org/

– Alignment and Phasing System (APS)
• Sensor responsible for pre-adaptive optics wavefront quality

• Developed by TMT International Observatory (TIO)
– JPL participates in several subsystems of TMT
– JPL delivers the APS based on requirements from TIO
– APS team uses MBSE to analyze requirements, produce

design, and performs analysis

http://www.tmt.org/

TMT Motivation, Goals,
Problems to solve

• Capture APS operational use cases, e.g.
– Post-segment exchange alignment
– Alignment maintenance
– Phase M1
– Off-Axis measurements of WFE

• Identify involved subsystems, e.g. TCS, M1CS
• Identify interfaces and interactions among subsystems
• Analyze associated scenarios

– Ensure timing requirements are met
– Ensure power and mass requirements are met

• Develop/refine timing requirements for algorithms, ICS and
external interface commands

TMT Alignment and Phasing
System Modeling

• Capture relevant information in a SysML model (database):
– Involved subsystems and their interaction points
– Information exchanged
– Estimated or required time durations of activities
– Distribution of system elements, mimic message exchange

• Used SysML constructs
– Internal Block diagrams, State Machines, Activity Diagrams

• Simulate scenarios using executable models based on fUML and SCXML
semantics and a model based clock and duration constraints

• Confidence of correctness achieved by
– Recording traces of simulation in sequence diagrams
– Ensure all “leaf” actions have durations constraints applied
– Ensure that all actions have been reached in the different scenarios
– Evaluate results against formal constraints

Running Example Objectives
• Use MBSE to define executable SysML model that captures

requirements, operational scenarios (use cases), system
decomposition, relationships and between subsystems, etc.

• Use the model to analyze the system for power
consumption
– Also mass and duration analysis (but out of scope)

• Produce documents like
– Requirement Flow Down Document
– Operational Scenario Document
– Design Description Document
– Interface Control Documents

• Goals: use standard languages and techniques, avoid
custom software development

TMT Model

• Customer and supplier model in same SysML
project, APS and Adaptive Optics

• Project level (customer) conceptual elements
re-used for simulation in downstream design

• Analysis: Duration, Power and Mass

https://github.com/Open-MBEE/TMT-SysML-
Model

https://github.com/Open-MBEE/TMT-SysML-Model

Observatory Conceptual Model

Executable System Engineering
Method (ESEM)

• Step 1: Formalize Requirements
• Step 2: Specify Design
• Step 3: Characterize Components
• Step 4: Specify Analysis Context
• Step 5: Specify Operational Scenarios
• Step 6: Specify Analysis Configurations
• Step 7: Run Analysis

Step 1: Formalize Requirements

• Requirement Pattern
– Customer Side

• Define the textual requirement with a Requirement
• Optionally define a design black box specification with a

Block with relevant value properties
• Optionally refine the Requirement with a Constraint Block

on the black box design Block
– Supplier Side

• Define a design black box specification with a Block (that
refines the customer’s black box Block if any and provides
tighter property values)

• Refine the textual Requirement by a Constraint Block (if not
already defined by the customer)

Step 1: Formalize Requirements

Step 2: Specify Design

• Follow OOSEM to define two white box Blocks
that specialize the black box specification
Block
– Conceptual Block (out of scope for brevity)
– Physical Block

• Decompose the white box designs with Blocks
representing the subsystems

Step 2: Black Box Level
Project level
components
communicate
with APS black
box block

Step 2: Conceptual Model

Communication between state machine specified components over ports

Step 2: Realization

System Decomposition Hierarchy

Step 2: Realization

System Decomposition Hierarchy

Step 3: Characterize Components

• Add relevant patterns to the design Block to
make it executable

• Example: Roll-up Pattern
– Constrained value represents an aggregate value

that is propagating up a hierarchy of
subcomponents

– Static roll-up (e.g., mass roll-up)
– Dynamic roll-up (e.g., power roll-up)

Step 3: Characterize Components

Power Rollup Pattern

State constraints

Step 3: Characterize Components

Power Roll-up Pattern Application

Step 4: Specify Analysis Context

• Analysis Context Pattern
– Abstract analysis context Block composes both the

design black box Block and white box Block
– Analysis properties defined on the analysis

context Block (e.g., peak power, power margin)
– Analysis parametric model on the analysis context

that computes and binds analysis values

Step 4: Specify Analysis Context

Analysis Context Pattern

Step 4: Specify Analysis Context

Analysis Context Parametric Model

Step 5: Specify Operational Scenarios

• Operational Scenario Pattern
• Concrete analysis context Block that

– Represents one operational scenario (e.g., power configuration)
– Specializes the abstract analysis context Block
– Redefines context’s properties with scenario-specific values
– Defines an owned behavior (sequence diagram) as scenario driver

» Changes the states of the different components, by sending
them signals, causing the rolling-up to occur automatically

» Can specify duration constraints to time the injection of
signals thus controlling time spent in a certain state

» Can use state constraints (on components) to verify during
execution if a component is actually in expected state

Step 5: Specify Operational Scenarios

Operational Scenario Pattern

Step 5: Specify Operational Scenarios

Operational Scenario Driver

Step 6: Specify Scenario Configurations

• Scenario Condition Pattern
– A decomposition tree of instance specifications

representing the state of the scenario
• Can be presented in tabular form

– Rows represent the instance specifications (e.g., component)
– Columns represent values (e.g., operating power) from the instance

specifications

• Issues
– Hard to keep instance specifications in sync with Block

hierarchy
• Mitigation: tool automation

– Instance specifications cannot be displayed in IBDs
• Mitigation: use full specialization tree of singleton Blocks for each

scenario

Step 6: Specify Analysis Configurations

Scenario Configuration Pattern

Step 6: Specify Analysis Configurations

Scenario Initial Condition Pattern

Step 6: Specify Scenario Configurations

• Scenario Configuration Pattern
– Scenario configuration is an Instance Specification

of the scenario’s concrete analysis Block
• References an initial scenario condition with an

<<analyzes>> relationship
• References a final scenario condition with an

<<explains>> relationship

Step 7: Run Analysis

• Run the configured analysis with a simulation
engine on the initial conditions to get the final
conditions:

• Produce the following views on final conditions
– Table showing final analysis values (e.g., peak power)

and the constraint’s pass/fail status for each scenario
– Timelines: state changes for components over time
– Value profiles: total rolled up values over time

Step 7: Run Analysis

OpenMBEE

Provides a platform for modeling that serves
SysML CAE Client and Web-based View
Interaction – integrates JPL’s mission
environment openCAE

– Basic Infrastructure for Version, Workflow, Access
Control

– Flexibility of content
– Support for Web Applications and Web-based API

access

https://github.com/Open-MBEE

https://github.com/Open-MBEE

OpenMBEE Current Realization

Duration Analysis

Specify Property Based Requirement

Analyze Conceptual Design

Conceptual Design

Operational behavior captured with
state machines and activity models

Conceptual behavior model

Communicating
state machines

Dynamic and fixed
duration constraints

Duration analysis results verified
against requirement for a particular
configuration

Interchanges between conceptual
components

Provides information for ICD from conceptual behavioral model

Summary & Outlook

• It is possible to automate requirements verification in SysML
models

• Introduced a new Executable System Engineering Method that
consists of a set of pure SysML analysis patterns

• The method can be executed using an over Off the shelf
simulation engine for SysML

• Trigger Analysis from Web interface and auto-generate
documents

• Viewpoints which provide the power profile plots in View
Editor

Reference
• Karban, R., Jankevičius, N., Elaasar, M. “ESEM: Automated Systems Analysis using

Executable SysML Modeling Patterns”, (to appear in the proceedings of INCOSE
International Symposium (IS), Edinburgh, Scotland, 2016.)

• Karban, R., Jankevičius, N., Elaasar, M. “Creating System Engineering Products with
Executable Models in a Model Based Engineering Environment.” (to appear in
proceedings of Modeling, Systems Engineering, and Project Management for
Astronomy VI , Edinburgh, UK, 2016)

	Slide Number 1
	Outline
	Who is Robert?
	Systems Analysis
	Requirements Verification
	Model Based Systems Engineering
	Project Question
	Proposed Approach
	Executable Models
	Model Execution
	Cameo Simulation Toolkit (CST)
	Object Oriented System Engineering Method
	Running Example
	TMT Motivation, Goals, �Problems to solve
	TMT Alignment and Phasing System Modeling
	Running Example Objectives
	TMT Model
	Observatory Conceptual Model
	Executable System Engineering Method (ESEM)
	Step 1: Formalize Requirements
	Step 1: Formalize Requirements
	Step 2: Specify Design
	Step 2: Black Box Level
	Step 2: Conceptual Model
	Step 2: Realization
	Step 2: Realization
	Step 3: Characterize Components
	Step 3: Characterize Components
	Step 3: Characterize Components
	Step 4: Specify Analysis Context
	Step 4: Specify Analysis Context
	Step 4: Specify Analysis Context
	Step 5: Specify Operational Scenarios
	Step 5: Specify Operational Scenarios
	Step 5: Specify Operational Scenarios
	Step 6: Specify Scenario Configurations
	Step 6: Specify Analysis Configurations
	Step 6: Specify Analysis Configurations
	Step 6: Specify Scenario Configurations
	Step 7: Run Analysis
	Step 7: Run Analysis
	OpenMBEE
	OpenMBEE Current Realization
	Duration Analysis
	Conceptual Design
	Conceptual behavior model
	Interchanges between conceptual components
	Summary & Outlook
	Reference

