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• People are testing boards, boxes, and other assemblies 

with protons

• This is of … limited value
• And there are significant

ways that tests can be
of even less value

• NEPP is developing a
proton board-level 
testing guideline to
explore this problem

• See also the NEPP low-energy proton test guideline:
http://radhome.gsfc.nasa.gov/radhome/papers/MRQW2012_Pellish.pdf

iPad irradiation at UC Davis

http://radhome.gsfc.nasa.gov/radhome/papers/MRQW2012_Pellish.pdf
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Motivation: Why?
• Single Event Effects are 

expensive to test
– Should test with heavy 

ions
– Devices must be 

exposed

• Proton-only testing is
being used by…
– Higher risk NASA 

missions
– Aggressive commercial

CubeSats deployed from ISS
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Can Protons Work?
• Protons do (sort-of)

simulate the
environment
– Nuclear reactions
– ISS environment

simulated up to a
rough cutoff

– Results can be applied to 
other environments

• Understand sensitive 
volumes (SVs)

• Environment heavy ions

• But reaction particles are 
inherently short-ranged

Heimstra, IEEE TNS, 2003 – 1×1010/cm2

200 MeV p+
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Protons Have Limitations
• In a 2µm sensitive depth…

– 1×1010/cm2 200 MeV 
Protons

– More protons can be used

• Proton recoils give energy 
depositions similar to 
heavy ions
– But leave high LET gap
– More protons weakly 

affect the gap region

• But not all SEE modes are 
this shallow
– More later

Foster, IEEE TNS, 2008 –
energy deposition in 2µm
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Events during proton testing

Events during 10 year ISS mission Gap
Similar to LET 14
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Motivation: Problems
• The space environment is not just protons
• Heavy ions have much higher LETs than proton recoils… 

and higher deposited energy in sensitive volumes (SVs)
• Heavy ion tests allow exploration of angular sensitivity

• The bottom line is that
you’re going to miss a
bunch of stuff…

• But you are establishing
some increased robustness
– it just might not be enough

Bad 
Stuff

Full SEE
Test… Bad 

StuffElimin-
ated
Stuff

Bad 
Stuff

Proton-Only
SEE Test

Eliminated Stuff

How “bad” is
what’s left?
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Motivation: Example
• How bad can the “gap” be – what’s missed by a 

1×1010/cm2 proton test
• One example bad part is the HM65162 (1985) SRAM

• Has SEL at very low LET
– Energy cutoff discussed above 

suggests SEL should be seen
– Actually has ~40% of no SEL in 

1x1010/cm2 protons

• ISS SEL rate is about 
0.01/device-day

• Similar observation - NEC4464
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Motivation: Future
• Not likely to go away:

– Package on Package
– Limited beam penetration on 3D 

Circuits
– Heat sinks and thermal management

• Mission design
– If limitations are understood, design 

could benefit
• We should establish best practices 

in the use of proton board-level 
testing.



National Aeronautics 
and Space Administration The Good, the Bad, …

• Good
– Low cost
– Can test in flight-like situation
– No testing is really bad, some parts have DSEE @ .1/day
– It has been used, to some success on ISS missions
– Bit upsets, SEUs, and SETs are easily caused by proton events, 

though only a limited subset of them may be observed.
• Bad

– The SEEs proton testing is worst for, are the worst things:
• SEL
• SEB
• SEGR

– Ions generated are low(er) Z
– Ion range limited to ~10µm
– May be difficult to observe and

isolate rare events from test artifacts
Ladbury, 2015 – SEL requires deep charge collection
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• But it does work – a little
– What you’re getting is so minimal that a bad test or 

misinterpretation could be worse than no test
• The results are not great

– At 1e10 fluence, resulting DSEE rate is only constrained to 
0.01/day (worst case, due to bad actors) – For ISS orbit

– 1e11 does much better, but value not quantified yet
• And some theory is frustrating

– Proton recoils have flat angular distribution
– If something does happen, you know little about angle

• Most frustrating: It is probably, on-average, much better 
than the worst-case established…
– How likely are worst-case devices?



National Aeronautics 
and Space Administration 

Scaling & Technology
• Scaling doesn’t impact validity of proton SEL tests

• Scaling doesn’t really affect the event types with 
the biggest problems – SEL, SEGR, and SEB
– These transistors (i.e. power) don’t really get scaled
– Scaling by itself makes SEL worse, but decreasing 

voltage improves SEL
• In general, for highly scaled devices, SEL is improving…

• For other SEE types, the reduction in SV size is 
improving the effectiveness of proton testing
– Small SVs, low threshold charge
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• The guideline is about testing – here’s an 
overview:
– Planning, exposure level, test device
– Facilities
– Preparation
– Test operation
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• There are some parts with failure 

rates around 0.1/device-day in ISS 
orbit. You’re here without test data.

• Test boards must use the same 
devices as flight units

• With proton testing, 1e10/cm2

results in DSEE rates around 
0.01/device-day
– 1e11/cm2 improves this, but hard 

numbers are limited

• Must consider exposure level and 
SEE types

• If possible plan to use two energies 
to enable use of Bendel 2-parameter
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Ladbury, IEEE TNS, 2015

Equivalent LET = Energy / (ρ*dSV)
Max Equivalent LET requires 2.3 recoils
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• For proton-only testing, 200 MeV is heavily desired.  

(Required to meet claims given in guideline.)

• Ideally, synchrotrons would be avoided due to beam 
structure impact on testing

• Other proton facilities are available, but require direct 
communication/discussion for each user
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• Test boards/equipment
– Remove bulky heatsinks
– Remove/don’t install shielding (we’re not testing the shielding 

predictions)
– Limit beam exposure of any non-test equipment

• Work with facility regarding shipping – especially to Canada
• During exposure, all items in the beam will be exposed to TID

– Generally, TID levels over 3 krad(Si) are likely to cause problems with 
boards (but it could happen lower) – Be careful of unit TID limits!

– 1×1012/cm2 would be best for a proton test, but 1×1011/cm2 might be a 
reasonable compromise.

• 1×1012/cm2 provides close to 1×107/cm2 recoils – similar to heavy ion coverage
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• Verify the beam details by requesting beam diagnostic 
information from the operator
– Radiochromic film, scan information, or other

• Ensure the test board(s)
are positioned far
enough away to
expose all electronics.

• If multiple boards are
used, may want to put
Radiochromic film
between each unit
– But it measures dose, not 

particle fluence…
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• Operational test modes should be considered carefully
– Test for normal system response (flight-like application) and recovery (if possible 

stop the beam during recovery)
• Typically doesn’t have good prognostics or diagnostics

– Designs specifically for an accelerated test (design for test)
• Identify errors and increase coverage – but requires careful development

• Try to observe as many error modes as possible
– Strange, rare event types my be dangerous

• If there is something rare that may cause a big operational problem, it is more important to 
study than 100s of events that are easily handled

– But they may be test artifacts
• Test operations should keep in mind

the beam structure – i.e. 
synchrotron vs. cyclotron
– For static tests, beam structure only 

really causes problems with figuring 
out live time.

– But for dynamic tests, it is 
important that the test does not 
alias with the beam delivery…

Guertin, RADECS Workshop, 2012
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• Be prepared to not have your
equipment for a couple weeks
due to activation (months with 1×1012)
– Will be worse with higher energies

and higher exposures
– Shipping regulations vary, discuss

with the test facility
• Ideally, a post-irradiation burn-in

may help identify latent damage
• All observed error types should be documented before 

leaving the facility
• Obtain test logs, exposure information, and ensure any 

shipping or facility exit requirements are handled.
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Analysis & Theory
• For SEEs with less than 1-2µm SV depth

– The relation between the number of events in a 1×1010/cm2 test,
and the predicted rate for ISS, is estimated by the PROTEST code

– Most bit upsets and SEFIs have this depth, but fluence dictates 
coverage of observed modes.

• For DSEE – SEL, SEB, and SEGR, the resulting rate is based on 
worst-case devices from sampling
– If this was handled as a regular engineering problem, the hard 

limits could easily result in worse predictions than no testing (the 
secondary ions are weak and the device geometry is unknown).

– But the likelihood of worst-case devices actually being in your 
design is hard to gauge.

• Specific rates based on fluence, number of observed events, 
and event type, are TBD (except for 1×1010/cm2 test for ISS)
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Future/Recommendations
• Limitations at this point…
• Alternate environments need improved study of 

cutoff LET and residual risk
– Other LEO, GEO, and maybe surface of Mars?
– Each SEE category would have different claims to be 

established

• It’s all about statistics…
– Recommendations about how to build with multiple 

architectures to avoid systematic problems?
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• Proton-only testing to “improve” assurance of systems has, 
and will be used – but it is potentially very limited in value.  
– Effective LET cutoff is low for damaging SEE
– Ideally would test with at least 1×1012/cm2

• We need to make sure test methods are good to ensure the 
(limited) value of this type of testing is not compromised
– Guideline in development
– Configuration of test, collection of data, selection of fluence/etc.

• The theoretical limitations of this approach are significant, 
but the practical experience of test groups indicate that it 
can result in 10-100x improvement over predictions with 
no testing – for ISS orbit.
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