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Outline

● A novel comet formation scenario
● I will argue that comets are primordial rubble piles and not 

collisional rubble piles

● 67P properties consistent with scenario
● Nucleus spectrophotometry
● Nucleus morphology
● Nucleus mass (distr.), density, porosity, dust/ice mass ratio
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Solar Nebula (first ~ 3 Myr)

We envision a low-mass disk (15 Earth masses of cm-sized 
pebbles at 15-30 AU)

Pebbles are consumed by D=50-400km TNO formation through 
streaming instabilities. These bodies become substantially 
thermally processed by 26Al. 

When ~2 Earth masses of pebbles remain, the Roche density 
no longer can be reached. TNO formation stops.

Remaining pebbles merge to cometesimals through very slow
hierarchical agglomeration.

Streaming instabilities:  Youdin & Goodman 2005, Astrophys. J., 620, 459 
Johansen et al. 2007, Nature, 448, 1022 

Hierarchical agglomeration: Weidenschilling 1997, Icarus, 127, 290
Windmark et al. 2012, Astron. Astrophys., 540, A73



  

Phoebe & Himalia: examples of TNOs with 26Al?
Phoebe

Captured onto retrograde orbit

D=217.7±1.5km: high porosity ψ=45-60%, low density 
ρ=500-1000 kgm-3, and significant irregularity expected

But ρ=1634 ± 46 kgm-3 (if chondritic ψ=10%) 
and shape oblate ellipsoid (a/b=0.93)

26Al readily explains high density and shape
Castillo-Rogez et al. (2012, Icarus 219, 86)

Himalia

Dimensions: 120±20km by 150±120km
Density: ρ>1400 kgm-3,nominally ρ=2400 kgm-3

Porco et al. (2003, Science 299, 1541); Emelyanov (2005, A&A 438, L33)

Credit: NASA

Credit: Porco et al. (2003, Science 299, 1541)



  

Aqueous alteration
Phyllosilicates: 0.7µm

Seen in 11 of 16 Jovian irregular satellites,
including Himalia, and D= 6-8km Callirrhoe, 
Megaclite, Themisto.

Uranus irregular satellite Caliban
Vilas et al. (2006, Icarus 180, 453)

Centaur (10199) Chariklo
Lederer et al. (2004, Earth Moon Planets 92, 193)

Plutinos: 2003 AZ84
Fornasier et al. (2004, A&A 421, 353)
2000 GN171 and 2000 EB173
Lazzarin et al. (2003, Astron. J. 125, 1554)

Al/Mg-rich OH-bearing minerals: 1.4µm, 2.28µm 

Centaur 1999 DE9
Jewitt & Luu (2001, Astron. J. 122, 2099)
Plutino 2000 EB173
de Bergh et al. (2004, A&A 416, 791)

Phoebe, Cassini:

Phyllosilicates (squares)
Metal-OH absorption: 2.16µm, 2.3µm
OH stretch fundamental: 2.72µm

Water bound in phyllosilicates (circles)
1.5µm, 1.95µm, 2.95µm
Clark et al. (2005, Nature 435, 66)

Credit: Clark et al 2005 Nature 435, 66



  

No aqueous alteration on 67P or 81P: 
comets probably not collisional rubble piles

OSIRIS (Fornasier et al. 2015 A&A 583, A30; 
Pommerol et al. 2015 A&A 583, A25;
Oklay et al. 2016 A&A in press) and VIRTIS 
(Capaccioni et al. 2015, Science 347, aaa0628;
De Sanctis et al. 2015, Nature 525, 500):

0.29 µm: possibly SO
2
 ice

2.9-3.6 µm: organics
~3µm: water ice

No spectral resemblance with aqueously 
altered carbonaceous chondrites!

No global 0.7 µm phyllosilicate absorption!

No phyllosilicates found in Stardust samples
from comet 81P/Wild 2!
Stodolna et al. (2010, LPSC 41, 1657); Berger et al. (2011,
Geochin. Cosmochim. Acta 75, 3501); Brownlee et al. (2012, 
Meteo. Planet. Sci. 47, 453); Stodolna et al. (2012, Geochim. 
Cosmochim. Acta 87, 35); Joswiak et al. (2012, Meteo. 
Planet. Sci. 47, 471).

Credit: Pommerol et al. 2015 A&A 583, A25



  

26Al in comet-sized bodies

67P has dust/ice mass ratio 4±2, i.e., ~20% (+13%/-6%) ice by mass
Rotundi et al. 2015, Science 347, aaa3905

Formation at t0 (canonical CAI) with 25% ice: D≳4km nuclei reach T=320K, may disrupt
Merk & Prialnik (2006, Icarus 183, 283)

To avoid loss of supervolatiles (amorphous water ice crystallization last line of defense!) 
in D=4km body:

Γ=500 MKS: formation not earlier than t0 +1.5 Myr
Prialnik et al. (1987, Astrophys. J. 319, 993)

Γ=3 MKS: formation not earlier than t0 +4.7 Myr
Haruyama et al. (1993, Geophys. Res. Lett. 98, 15079)

Formation of ~1 km cometesimals must be delayed to end of Solar Nebula lifetime 
(circa t0 +3 Myr). 

Our scenario has D=0.1-1 km objects formed by 3 Myr.



  

Goosebumps in the Seth pit

Credit: Sierks et al. 2015, Science 347, aaa1044



  

Goosebumps 

Hierarchical growth in Solar Nebula: relative velocity (thus compaction, strength, 
resilience) peaks during growth of m-sized objects (we estimate ρ=750 kgm-3)

Goosebumps (D=2.5m ±1m) are consistent with such growth.

Credit: Weidenschilling 1997, Icarus, 127, 290



  

Bastet: Positive Relief Features (PRFs)

Goosebumps merge at < 1 m/s to highly porous cometesimals

Cometesimals may maintain shape if accretion velocities are low (a few m/s)

Weidenschilling (1997, Icarus, 127, 290): 
D=2km bodies (67 head lobe?) primarily grow by accreting D=300-700m bodies

PRFs: spherical caps, each 320-450 m across. Intact cometesimals?



  

Primordial disk (first ~25 Myr)

TNOs will sit in the primordial disk for ~400 Myr.
Growth unavoidable!
Morbidelli et al. 2012, Earth Planet. Sci.Lett., 355, 144
Marchi et al. 2013, Nature Geosci., 6, 303

They started small (50-400km) and reach 
Triton/Pluto size (2300-2700km) toward 
end of primordial disk lifetime. 

This minimizes their viscous stirring of 
cometesimals

In the first ~25 Myr:

1) Relative velocities among cometesimals
gradually increase to ~40 m/s

We predict cometesimals acquire outer
compact layers

2) Gas drag effects gone; similarly-sized 
cometesimals collide

We predict formation of bi- and multi-lobed 
comet nuclei

3) Large comets like Hale-Bopp need late 
formation to avoid thermal processing 

We predict formation of 50km+ size 
comets by ~25 Myr



  

Layering

Numerous terraces: onion-shell stratification (650 m thick)

Lobes are individually layered: merger of two bodies

Accretion smear most cometesimals, goosebumps may remain intact. 
Similar to “talps” (Belton et al. 2007 Icarus 187, 332)

Credit: Massironi et al. (2015, Nature 526, 402)



  

Accumulation basins: accretion scars?

Credit:ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA



  

Evidence of core/shell structure?

CONSERT:
Kofman et al. (2015 Science 349, aab0639)
Ciarletti et al. (2015 Astron .Astrophys. 583, A40)

Homogeneous on ~10m size scales

But: “Two or three well-defined 
propagation paths could indeed be
potentially due to the presence of 
a large structure inside the nucleus”

Consistent with dominance of 
goosebump-sized structures in 
strata + some intact PRFs and 
larger voids?

Dielectric constant drops ~24% 
over top 150m:

Porosity increases 15% with depth?
Dust/ice mass ratio from 4 to 0.1?

We predict a 9-11% porosity 
decrease in top 150m

Credit: Kofman et al. 2015 Science 349, aab0639



  

The mass and bulk density of 67P
For the spin axis orientation 
“CM” about 7° from correct one.

M=1.1·1013 kg 
(range 0.9-1.4·1013 kg)

Corresponding density for 
assumed volume: 
ρ=330 kg m-3

(range 270-420 kg m-3)

In situ measurements by 
Rosetta/RSI (Pätzold et al. 2016, 
Nature 530, 63) 

M=9.982·1012 kg
ρ= 535 kg m-3 (correct volume)

We predict ~440 kg m-3 near core, 
up to  ~1000 kg m-3 near surface.



  

Bi-lobed nucleus

Early primordial disk:
it takes ~2.2 Myr for 
a “body” to sweep up 
a “head”

At t=25 Myr the same 
process takes ~110 Myr

Hard shell conserves 
lobe shape during 
merger?

Mixture of single- and 
bi-lobed 1-10km 
nuclei expected

Large comets may be 
multi-lobed

Credit:ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA



  

Comet nuclei imaged by spacecraft

103P/Hartley 2 from 700km
EPOXI,  2010

1P/Halley from 600km
Giotto, 1986

9P/Tempel 1 from 500/180km
Deep Impact/Stardust-Next, 2005/2011

19P/Borrelly from 2200km
Deep Space 1, 2001

81P/Wild 2 from 240km
Stardust, 2004

Credit: 
ESA
NASA
JPL/Caltech
UMD



  

Primordial disk (~ next 375 Myr)

The TNOs are too few and dynamically cold to initiate a collisional cascade. 
Their collisions are constructive and not destructive. 

Some TNOs (we estimate ~350) experience runaway growth and reach the 
sizes of Triton (D=2600km), Pluto and Eris (D=2300km) by t=400 Myr.

A low-mass dynamically cold primordial disk is necessary to avoid 
a collisional cascade and to ensure survival of primordial comet nuclei.

At least 40-60% of the comet nuclei avoid a small compaction impact.

At least 60-80% of the comet nuclei avoid destructive impacts. 

Uranus and Neptune enters the primordial disk and relocates comets to 
the Edgeworth-Kuiper Belt, the Scattered Disk, and the Oort cloud.



  

Rather few comets in the Scattered Disk?

We have a total of 2.7·109 nuclei with D=2-20km in the primordial disk. 
That is 100 times less than some previous estimates (e.g., Brasser & Morbidelli 2013).

Lunar crater size distribution suggests a very small contribution from 
comets during the LHB (Strom et al. 2005).

Bottke et al. (2012) calculated that there had to be less than 3·109 -2·1010 nuclei
in the primordial disk to produce the correct lunar crater size distribution. 

Our number is just below....

Bernstein et al. (2004):  HST deep survey to m~29 (D>15km) in a 0.02 deg2 region

Three objects discovered, the faintest having D=25km.

Volk & Malhotra (2008) used this to obtain a best estimate of the number of D=1-10km
nuclei: 3·105 nuclei in the 30-50 AU region, i<3º  (15% of the total).
The upper limit (95% confidence limit) was 2·108.

Our number is 9.5·106, that of Duncan & Levison (1997) is 9·107.



  

Jupiter Family Comets

To calculate number of JFCs with HT<9 and q<2.5 AU:
- Yearly fractional loss in the SD  (between Resc=1·10-11 yr-1 to 9.3·10-11 yr-1)
- Fraction of those that enter the JF (30%)
- Dynamical life-time of JFCs  (3.3·105 yr)
- Fraction of their time spent at q<2.5 AU  (7%)
- Compare with active/dormant comets at q<2.5 AU (280-750)

With our D=1.4-20km (HT<9 not well-defined) nuclei (4.19·107)
we get 29-270 JFCs (marginally overlapping if Resc high).  

Solutions (?):
- Is Resc higher than thought? 
- Tidal splittings (lobe separations) during the time spent as Centaur?



  

Summary

● Rosetta has made a detailed characterization of comet 
67P/Churyumov-Gerasimenko

● The comet has an unusual set of properties that require very special 
formation conditions

● The observed properties are consistent with a primordial rubble pile 
origin. The extremely high porosity and the lack of aqueous 
alteration is inconsistent with a collisional rubble pile origin since 
parent bodies appear being thermally processed

● We propose that most D>50km TNOs and comets originate from the 
same cm-sized pebble population but grew according to different 
mechanisms and on different time scales

● We propose that comet growth started in the Solar Nebula and 
finished in the primordial disk
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Are comets collisional rubble piles?

Massive (35 Earth masses) and dynamically warm (vrel~600 ms-1) 
primordial disk: 67P must be a collisional fragment of a larger 
body, or a bound bunch of such fragments

Oort cloud: Stern (1988, Icarus 73, 499)
Edgeworth-Kuiper belt: Farinella & Davis (1996, Science 273, 938)
Giant planet region: Stern & Weissman (2001, Nature 409, 589)

Primodial disk:

(2015) A&A 583, A43

(2015) A&A 583, A44

Credit: Rickman et al. 2015 A&A 583, A44



  

Problems
● Parent bodies are compacted by gravity (when heated by 26Al) 

and by collisions. How come comets are so fluffy?
● Parent bodies are aqueously altered. How come comets lack 

phyllosilicates?
● How to form comets out of something looking like Phoebe? A 

collisional origin of comets must be questioned.

● A comet like Hale-Bopp (D=70km) cannot reach its final size 
until >5 Myr after CAI (immediate formation) or until >20 Myr 
after CAI (gradual growth) in order to keep supervolatiles. Did 
comets form after Solar Nebula dispersal at ~ 3 Myr after CAI?



  

Collisional compaction

Laboratory pressure-porosity relation: silica + ice µm grain mixture, weighted by vol. fractions
Güttler et al. (2009, Astron. J. 701, 130), Lorek et al. (2016 A&A in press).

Hydrostatic equilibrium under self-gravity and collisional impact pressure

Diagram shows density in outer 20% by radius (i.e., 50% by mass)

Surface region of large bodies easily compact to densities in excess of 1000 kg m-3

32wt% ice

65wt% ice

Accretion velocity
of 10-30 m/s 
optimal to form 67P
(pebbles need >80%
porosity)

Collisional rubble pile
Itokawa only has 40%
macroporosity
(Abe et al. 2006,
Science 312, 1344)
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