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1 Problem overview, objective and motivations

(d No Rain effects
* Theoretical model of the ocean surface backscattering coefficient

* Ocean wave spectrum model and tuning approach
* Validation at Ku and C band

] Rain effects
* Methodology
e Results at Ku and C band

d Conclusions and future steps
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@ cirnicion ey Introduction
Overview: —— —
Rain strongly affects the wind scatterometry leading to erroneously

wind retrievals if the rain effects are not compensated.

Objective:
Development of a theoretical forward model to describe the ocean
surface backscattering coefficient in presence of both wind and rain.

[image adapted from:
http://www.aquatic.uoguelph.ca/oceans/PacificOc
eanWeb/NPProperties/Salinity.htm]

Motivations:

= Accurate approach in estimating winds and opportunity to jointly estimate wind/rain

= Possibility to evaluate the uncertainty of the rain rate estimates affecting the uncertainty
in the wind retrievals.

Challenges:

»  Accurate representation of the ocean surface roughness firstly in only wind conditions
and then in rain conditions.

s The ocean physics which may have a different impact on the scatterometer signal
polarizations
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* The ocean surface is assumed as composed by: small-scale capillary waves superimposed
to large-scale gravity waves;

3 .‘. Single patch
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 The Bragg mechanism regulates the backscattered radiation: the capillary waves are

resonant to the microwaves (k):
kg = 2mk sin 9

* The Two-scale model is used to describe the ocean surface backscattering coefficient:
cotd

GO — J.dsvy de'x a;(g, (D)(l _ va tan Q)P(Sx’Sy) 6, ¢: the zenithal and azimuthal

observation angles

a® is computed as the sum of the radiation from the small-scale patch ay (0, @), weighted by

the slope distribution of the large-scale waves P(Sy, S,,).

An accurate representation of the ocean surface roughness is crucial
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* The ocean wind wave spectrum model developed by Elfouhaily et al., 1997 is used (E);

Long waves Short waves
curvature curvature Upwind/Crosswind
spectrum spectrum ratio

1 |
Wk, @) = Cy—— [B; + By][1 + A(k) cos 2¢]

k: wavenumber
@: the wind direction

* However, comparisons with the Ku-band QuikSCAT scatterometer show a disagreement
between the GMF and the theoretical model where the E spectrum is used
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The spectrum needs to be tuned in both directional and non-directional part
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* The goal:
The spectrum has to be free of any instrumental constraint like fixed frequency, incidence
angles, look angles, etc.

* Methodology:
- Focusing on the spectrum in the capillary waves region
- Tuning of the equilibrium range parameter:

A) Elfouhaily et al. 1997 expression: two range logarithmic law

1+ In[F(u*)] low winds

* — -2
a(k,u’)m =10 { 1+ 31In[F(u*)] high wids

B) Our new expression:
a(k,u”)y, = [1 —h@)]alk, u*)me + h(u*)cf(kru*;kB)ml)

Exponential Linear
trends with u* trends with u”*

¢ Unified law

¢ Exponential trend (friction velocity #*) in low winds and linear trend at high winds
¢ Patching function dependent on u*

¢ High winds are dependent on the Bragg wavenumber = match at C- and Ku-band




SAPIENZA

UNIVERSITA DI ROMA

Jet Propulsion Laboratory
California Institute of Technology

Ku-band validation: QuikSCAT GMF
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‘e e SeaWind data: Hurrican Isabel 2003
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C-band validation: CMOD5.N GMF
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e Rain effects: methodology
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The ocean surface modifications induced by the rain are modeled in the ocean wind wave
spectrum:

* Rain induced wave damping:
Attenuation modeled as turbulence viscosity [Nystuen (1990)]

* QGeneration of ring waves:

Additive Log-Gaussian spectral model [Bliven et al. (1997)] [C Ring WaYeszom]
ontreras et al.,

Rain — free:

1
Wk, U, @) = 5—— Bk, U, + |2 (0)

. ‘ Rain Effects :
Rain — affected: Rain Rate (RR) dependence

W(k,U,¢,RR) = {B(k,U),@(9) + [B(k, Up_tuncae ™ *FP@(¢) + B(k, RR)ring}

2tk 4
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Rain affects more low winds than high winds:

* light rains have strong impact on the backscattering coefficient
» clear increase of the backscattering with the rain rate
 rain smooths the backscattering directional component
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Rain effects: C-band results
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f Conclusions and future steps
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1 Non-rainy conditions:
* A new definition of the equilibrium range parameter leads to an very good agreement between the
theoretical and empirical model;

* The Bragg wavenumber reveals to be the key point to correctly model different frequencies.

* Good results obtained by a preliminary analysis with real data

U Rainy conditions:
* Reasonable results are shown by the theoretical model:

* Both the Ku band and C band reveal to be affected by the rain

e The directional contribution is compromised by the rain especially at lower winds

] Next:
* Analysis at different frequency: L. band and Ka band

* Exploitation of a sensor synergy

e Study of the braking waves to model the horizontal polarization

* Additional tests with real data at different frequency



