
Hidden Costs of Unsupported Software,
Obsolescence and Non-Standards; The Importance
and Value of a Multi-Mission Software Program

Brian J. Giovannoni / Carole Boyles
Jet Propulsion Laboratory / California Institute of Technology
SpaceOps 16–20 May 2016, Daejeon, Republic of Korea

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

2

Agenda

• Introduction
• Software Maintenance

 Obsolescence – Adaptive Maintenance
 Industry Standards & Best Practices - Perfective Maintenance

• Summary

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Introduction

• Software Maintenance ! Stating the Obvious?
 Obvious enough but often overlooked
 This presentation summarizes the paper of the same

title razing awareness of the importance of software
maintenance

3
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Introduction – Definitions

• Software Maintenance is the total set of modifications to a software
product, performed after delivery, to correct known and emergency
problems, to keep the software useable in a changing environment and
to continually improve and make enhancements.

• Obsolescence is essentially the loss, of the manufacturers or suppliers
of items or raw material.
 Functional The product, software, hardware or subsystem still functions as

delivered but requirements (hardware or software related) change and are
no longer supported.

 Technical The product, software, hardware or subsystem is no longer
obtainable and/or has been superseded by a replacement.

• For our purposes industry standards refer to standards that govern and/
or define interoperability. We also considers popular industry trends
and open source technologies that are often considered standards.

4
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Background

Activity Description
Communication Communication with stakeholders to understand objectives, gather

requirements and to define features and functions.
Planning Defines the work to be performed, risks, resources, products and the

schedule
Modeling The design of the software to include a better understanding of the

requirements and how they are achieved
Construction Development and test
Deployment Delivery of the tested software to the customer and the collection of

feedback used to evaluate satisfaction of the requirements

5
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Pressmen’s software process framework
• Most frameworks do not directly call out maintenance
Process models focuses on development:
• Waterfall, Spiral, The Unified Process and Scrum.

Software Maintenance – Defined

• IEEE Std 14764-20061 defines the following types of maintenance:
 Corrective maintenance encompasses the modification needed to repair

errors in the software. Errors might include the inability for the software to
meet stakeholders intended requirements and the resolution of unintended
effect resulting in emergency maintenance.

 Preventative maintenance is defined as any modification to software after it
has been delivered to repair defects discovered before they have become
operational problems.

 Adaptive maintenance are modifications that were not in the original design
of the software when first released. Modifications of this nature are usually
needed to accommodate changes in the environment e.g. operating system
changes, new interfaces.

 Perfective maintenance are modifications to software that improve
performance or maintainability. Included in these types of modifications are
those that add new and desired functionality, and improve user experience.

6
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – What Does It Cost?

• Maintenance consumes 40 to 80 percent of software
costs.

• The average is about 60 percent, but let's assume we
can error on the 40 percent.
 Enhancements are responsible for 60 percent of software

maintenance (Perfective)
 Error correction about 17 percent. (Corrective &

Preventative)
 The remainder of this maintenance, about 18 percent, goes to

adaptive maintenance (Adaptive)
 5 percent usually goes to making the software more

maintainable (Perfective)
7

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – What Does It Cost? (Example)

• Assume a software component costs 600K
• If we choose 40% as average we would require

at least another 400K for maintenance
 Of the 400K, 240K will go towards additional

enhancements (Perfective)
 68K for bug fixes . (Corrective & Preventative)
 72K for adaptive maintenance. (Adaptive)

• Maintenance should be planned for the life of the
component

8
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – The Story “Overlooking The
Obvious”

• Common Aerospace Reuse Approaches
 Experts working on projects
 Developers and programming savvy operators build

tools to simplify their job during operations
 Big project specific investment

9
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Common Reuse Approach 1

• Experts working on projects
 traditionally bring tools / software with them to

perform their job functions.
 Our experiences shows this reuse approach to be

very successful.
 The owner of the software maintains it as they move

from project to project.
 If done well many of these tools / libraries can be

reused by others to build new capabilities.

10
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Common Reuse Approach 2

• Developers and programming savvy operators
build tools to simplify their job during operations
 similar to reuse case 1 but usually on a larger level.
 These tools are built on modern programming

frameworks using open source libraries and
functionality to implement a domain specific need.
 Much more complicated than approach 1, the ability

to share, modify and inherit has a steeper barrier to
entry.

11
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Common Reuse Approach 3

• Big project specific investment
 Intended to solve an important operational concern
 Often seen as must haves for project success.
 Global optimization “designing for multi-mission use”

is seldom the focus. Local optimization is paramount
as importance is placed on ensuring success of the
mission at hand.

12
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Reuse Approaches – Pros / Cons

Approach Pros To Reuse Cons To Reuse
1. Shared libraries and

small standalone tools
• Simple to maintain
• Maintenance performed best effort
• Small in scope easy to use in

composition

· Lacks extensibility, modifiability
· Lacks support

2. Applications with
dependencies on open
source frameworks and
platforms

• Developed to solve an important
operational need

· Difficult to modify without original
author
· Requires knowledge of the open
source libraries and frameworks

3. Large project
investments

• Developed to solve an important
operational need

· Likelihood developed with
multimision in mind is low; large
modification is needed to adapt for
new use
• Upgrades to platform
• Potential technology no longer

supported
• Personnel no longer available

13
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – The likelihood of planned
maintenance

Approach Likelihood of Planned Maintenance
1. Shared libraries and

small standalone tools
• Maintained by owner best effort basis

2. Applications with
dependencies on open
source frameworks and
platforms

• Could be maintained by owner for simple fixes and enhancements if time
allows best effort at best

• Little attention will be paid to updates due to changing environments
• If originator moves on all support will be dropped

3. Large project
investments

• Likely only early phases operations
• Limited to bug fixes

14
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – What Happens When Absent

• If only bug fixes were planned (Corrective & Preventative)
 OS version evolution (Adaptive) not performed
 Third party software dependency updates (Adaptive) not performed
 Security patches (Adaptive) not performed
 Addition of new features would be sacrificed. (Perfective) performed

• What is the likelihood software will work in a new environment?
• Will the technologies still be available?
• Are knowledgeable staff available to migrate the software for the new

mission?
• How hard will it be to add new features for a new mission after the fact?

15
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Hidden Cost

• Therein lie our hidden costs for lack of foresight and
planning for software maintenance and reuse.

• Time works against us here
 Without maintenance time increase the difficulty for

reuse
– Loss of expertise
– Environment requires substantial updates
– Obsolescence

• Costs for rejuvenation can cost as much as the
original cost to develop

16
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Software Maintenance – Hidden Cost (Cont.)

Approach Potential Hidden Costs Per Reuse
1. Owner shared code,

libraries and small tools
At best 40% cost to cover corrective, adaptive,
preventive and perfective maintenance.

2. Owner shared application
larger in nature built with
open source libraries and
frameworks

At best 40% cost to cover corrective, adaptive,
preventive and perfective maintenance.

High probability branching will occur which linearly
increases this 40%. In other words, 40% * the number of
branches.

3. Large project investments At best 40% cost to cover corrective, adaptive,
preventive and perfective maintenance.

Due to limiting maintenance to bug fixes or none at all
there is a potential of 100% reimplementation.

17
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Obsolescence – Adaptive Maintenance

• Functional The product, software, hardware or subsystem
still functions as delivered but requirements (hardware or
software related) change and are no longer supported.

• Technical The product, software, hardware or subsystem
is no longer obtainable and or has been superseded by a
replacement.

• Planned The product is deliberately deprecated by the
vendor justified with a business decision of progress to a
new product line. Bill Gates once said “In three years
every product my company makes will be obsolete. The
only question is whether we will make them obsolete or
somebody else will.”

18
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Obsolescence – Examples

• Functional
 Software developed on Solaris needs to move to a

new OS
 Security updates

– Needed but do they break your software?

• Planned
 Dependency on hardware platforms e.g. Sun Rays

• Adaptive maintenance is used to evolve software
to avoid obsolescence

19
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

Industry Standards & Best Practices – Perfective
Maintenance
• International & industry standards can:
 Enhance interoperability
 Reduce risk
 Lower project integration costs and open up

opportunities
• Maintenance can be applied to support incremental

enhancements adopting standards
 Improve consistency
 Protect existing strategic investments
 Support for multiple vendors
 Facilitate external partner integration

20

Summary – Maintenance IS a part of every activity

Activity Description
Communication Communication with stakeholders to understand objectives & issues,

gather new requirements and to define new features and functions.
Planning Defines the work to be performed, risks, resources, products and the

schedule
Modeling The updated design of the software to include a better understanding

of the new requirements and how they are achieved
Construction Development and test new requirements and fixes
Deployment Delivery of the tested software to the customer and the collection of

feedback used to evaluate satisfaction of the requirements

21
Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.

1. Maintenance MUST be planed to support the life of software
• Inception thru end of life
• To avoided obsolescence
• Ensure reuse (avoided reimplementation)

2. Planning for maintenance must include expected life span of the software

Questions?

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. 22

Thank You!

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged. 23

24

	Hidden Costs of Unsupported Software, Obsolescence and Non-Standards; The Importance and Value of a Multi-Mission Software Program
	Agenda
	Introduction
	Introduction – Definitions
	Software Maintenance – Background
	Software Maintenance – Defined
	Software Maintenance – What Does It Cost?
	Software Maintenance – What Does It Cost? (Example)
	Software Maintenance – The Story “Overlooking The Obvious”
	Software Maintenance – Common Reuse Approach 1
	Software Maintenance – Common Reuse Approach 2
	Software Maintenance – Common Reuse Approach 3
	Software Maintenance – Reuse Approaches – Pros / Cons
	Software Maintenance – The likelihood of planned maintenance
	Software Maintenance – What Happens When Absent
	Software Maintenance – Hidden Cost
	Software Maintenance – Hidden Cost (Cont.)
	Obsolescence – Adaptive Maintenance
	Obsolescence – Examples
	Industry Standards & Best Practices – Perfective Maintenance
	Summary – Maintenance IS a part of every activity
	Slide Number 22
	Slide Number 23
	Slide Number 24

