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Why Enceladus?

(Porco et al., 2006; Dougherty et al. 2006) Image: NASA/JPL/Space Science Institute
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Why Enceladus?

Ice crust

Global ocean

Rocky core
South polar region
with active jets
(less et al., 2014, McKinnon, 2015, Thomas et al, 2015) Image: NASA/JPL
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Why Enceladus?

INGREDIENTS FOR LIFE

With its global ocean, unique chemistry and
internal heat, Enceladus has become a promising
lead in our search for worlds where life could exist.

http://saturn.jpl.nasa.gov/files/enceladus_infographic_full.pdf 9




@ ELF Concept: The Enceladus Life Finder JIPL

* Fly through the Enceladus plume just like

Cassini did....

« But do it with instruments of =
today’s capabilities...Cassini Tiger 's;\
instruments are 20 years old. Stripe
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@ The ELF Mission Concept S0

10 flybys... 2 instruments... 1 profound question: Is there life beyond Earth?

MASPEX ENIJA
MAss SPectrometer for Planetary ENceladus Icy Jet Analyzer
EXploration « Target: Plume grains
« Target: Plume gas » Heritage : Giotto, Stardust CIDA but
+ Extended mass range for heavy organic improved ion optics, ion detector, trigger
molecules logic, spectra processing
« Enhanced mass resolution for critical « Segmented target for low and high-rate
isotopes spectra mode (compositional profile with
* Enhanced dynamic range for high S/N 100 m spatial resolution)
* Improved sensitivity (better than 1 ppt with « Complete composition of each ice grain,
cryotrap) for rare noble gases over a wide mass range
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Each 62 day orbit would be rich in science

-

~500 Whr
Recharge
(3 days)

/
/ ~1500 Whr $
Recharge - B: Comm
(10 days)

I)Qe‘ D: Quicklook comm

C: S/c slew to
flyby attitude

C: Solar Array
and s/c slew to
flyby attltude

Only period
where
arrays are
not pointed
at Sun

(5 hours)

I

C: Solar Array
Slew

-
-
-

_________ Battery Recharge Mode

Slewing Mode

Comm Mode

Pre-Decisional: for information and discussion purposes only.



he Plume was Well Characterized by Cassini JIPL.
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@ Proposed ELF Science Investigation JIPL

Science Objective 1 — Evolution

c

@) : : : : : : :

= Determine if Enceladus’ volatiles, including organics,

o have evolved over time.

>

L Nitrogen as an Indicator Reactions with Water Hydrothermal Alteration
__.? 1a. Determine the original 1b. Quantify the fraction of 1c. Confirm whether the
E molecular carrier for the volatile population that ocean has been, or is, in
[ nitrogen as an indicator of has not reacted with liquid contact with hydrothermal
S the degree of volatile water. systems at its base.

CIU evolution on Enceladus.
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@ Proposed ELF Science Investigation JIPL

Evolution

Science Objective 2 — Habitability

Determine if the ocean of Enceladus satisfies the basic
requirements of habitability.

Temperature Redox Energy Oxidation State

2a. Determine the
temperature of the
ocean and possible
hydrothermal systems
to within 100 K.
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@ Proposed ELF Science Investigation JIPL

Evolution

Science Objective 3 — Life

Determine if the plume of Enceladus contains chemical
signatures of biology.

Amino Acids

3a. Look for patterns in the
amino acid distribution
indicative of biological synthesis,
e.g. underrepresentation of
glycine relative to other amino
acids that are energetically more
difficult to form.

Membrane Molecules

3b. Determine the long-chain
fatty acid (C12-C30)
distribution to look for patterns
such as the even-odd
disparity due to C2 addition in
biological synthesis.

Isotopic Trends

16
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@ Proposed ELF Science Investigation: Life JIPL

1. Amino acid pattern deviating from abiotic.

4.5
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> e W Aspartic Acid
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@ Proposed ELF Science Investigation: Life JIPL

2. Repeating subunits and clustering in membrane-building

molecules.

abiotic environments do not.

Biotic membranes exhibit repeating carbon subunits;
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@ Proposed ELF Science Investigation: Life JIPL

3. Combined isotopic and compositional trends.

Measurement of isotopes
in carbon bearing species
and abundances relative
to hydrogen are used to
distinguish biotic from
abiotic methane on Earth.
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A Life Investigation Within Reach  JIPL

Jet Propulsion Laboratory
California Institute of Technology

NUMBER OF CARBON
ATOMS IN LIPIDS Strong indication of biotic
or pre-biotic processes

acid and/or
isoprenoids

ISOTOPE DISTRIBUTION

|
/ Measure fatty
IN ALKANES

|
AMINO ACID easure isotopes
ABUNDANCE PATTERN and abundance
pattern in alkanes
Measure amino
acid distribution

Yes

Yes

Strong indication of
abiotic processes

Multiple, independent tests for patterns associated with life would provide for

a robust science investigation. 20
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Conclusions

* There is definitive evidence
of a subsurface global
ocean with organics, salts,
and free energy.

* The plume of Enceladus
Includes ocean material
and is readily analyzed for
evidence of life—a goal of
the Enceladus Life Finder
concept.
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Why Discovery for an Enceladus
mission?

e Classic Discovery mission—follows on from Flagship
with a well-proven analysis technique (Cassini did it, at
a range of flyby speeds and altitudes that allow us to
fine-tune our fly-throughs).

* We will not do costlier, high-risk missions at Enceladus
without knowing something more about its biological
potential

 Thereis “too much” to do in the outer solar system...
do with Discovery what you can do with Discovery.
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Science Leadership
Cornell University*  Provide top-level project and science leadership. Fully responsible for all aspects of the project.
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| Jonathan Lunine * PI NASA Cassini-Huygens, JWST, Juno, Voyager
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Jirgen Schmidt « Co-l Univ. of Oulu Modeling of the particle emission from Enceladus' plume
Carolyn Porco * Co-| SSI+ NASA Analysis of plume dynamics and ice abundance/size distribution
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A - . Science Lead for STM Objective 1. Coordinates overall analysis and interpretation to achieve science Objective 1. Interpretation of
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