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Phobos and Deimos Quick Facts

Phobos Deimos

Size 26.1 x 22.8 x 18.3 
km

10.4 x 12.2 x 15 km

Density 1.86 g/cm3 1.49 g/cm3

Orbital period 7.66 hr 30.35 hr

Semi-major axis 9,377 km 23,460 km

Eccentricity 0.0151 0.00033

Inclination 1.093° 0.93° 2

Pascu, et al., 2014.

Photographic plate taken with US Naval Observatory 26” in 1988.
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Murchie et al., 2015 and ref. therein
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Origin Questions

Giant Impact Hypothesis
Craddock et al., 2010

Captured asteroids
Burns, 1978

Formation by co-accretion
Safronov et al., 1986

EXTERNAL IN SITU
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Expected compositions

• Captured primitive bodies: 
compositions typical of 
material found in primitive 
meteorites

• Form by late stage co-
accretion with Mars: 
compositions consistent 
with bulk Mars chondritic 
mafic mineralogy, e.g. 
ordinary chondrites

• Form from differentiated 
Mars (impact hypothesis): 
compositions with mafic 
minerals similar to basaltic 
Martian crust
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Image Credit: Randy Korotev

Image Credit: Randy Korotev

Adirondack

Image Credit: NASA/JPL/Cornell



Expected Composition

Murchie et al., 2014

6



Composition: View in Mid-2000s

• Spectral measurements 
showed Phobos had 
“blue” and “redder” 
material; Deimos looks 
like Phobos

• Redder material looked 
like D-type primitive 
asteroids

• No clear diagnostic 
evidence for mineral 
absorptions

Murchie & Erard, 1996

Rivkin et al., 2002 7

Thomson et al., 2011



Spectrometers Orbiting Mars: 
OMEGA and CRISM
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OMEGA CRISM

Spacecraft Mars Express Mars Reconnaissance
Orbiter

Wavelength Range 0.35 – 5.0 µm 0.4 – 3.9 µm

Spectral Resolution 0.007 to 0.02 µm/channel 0.00655 µm/channel

Pixel Angular Size 1.2 mrad 0.0615 mrad

CRISMOMEGA

Bibring et al., 2004 Murchie et al., 2007



Mars Express (and MRO) 
Observations

9
Image credit: ESA/DLR
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OMEGA Orbital Datasets

75 m/pix 7 m/pix 3.7 m/pix 9 m/pix

2200 m/pix 200 m/pix 1170 m/pix 800 m/pix 380 m/pix120 m/pix

OMEGA: High Spectral Resolution

HRSC: High Spatial Resolution Context

~40 m/pix ~27 m/pix

Stickney

Stickney

Stickney

Stickney



CRISM Orbital Datasets
CRISM: High Spectral Resolution

Stickney
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350 m/pixel

1200 m/pixel

HiRISE: High Spatial Resolution Context

Stickney

6.8 m/pixel 20 m/pixel

Phobos Deimos



12

Stickney Stickney

OMEGA Phobos CRISM Phobos

Summary Spectra
CRISM Deimos



Different Lighting Conditions
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Hapke’s Model for Radiance Factor

Modeling Effects of Viewing Geometry 
on Reflected Solar Radiance
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Related to 
viewing 

geometry

Related to 
surface 

roughness

Approx. for 
scattering 
between 
particles

Measured/Calculated: r, i, e, g, μ0, μ
Unknown: w, g1, Θ

Single 
scattering 

alebdo: ratio 
of scattering 
to scattering 
absorption 
efficiencies 
for a single 

event

Fraeman et al., 2012



Range of OMEGA Lighting 
Geometries

15Fraeman et al., 2012



Solve for Single Scattering 
Alebdo at Every Pixel
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Stickney Stickney
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DeimosFraeman et al., 2012



Recast to Any Lighting

17Fraeman et al., 2012



Recast to Any Lighting

18Fraeman et al., 2012



Space Weathering of 
Carbonaceous Meteorites
• Telescopic studies of asteroids of 

different ages suggest opposite 
trends in spectral slope with age 
(Nesvorny, et al., 2005; Lazzarin, et 
al., 2006; Kaluna et al., 2015)

• Experiments on carbonaceous 
chondrites suggest spectral 
properties might darken and 
redden like lunar samples, 
although details vary between 
samples (Gillis-Davis et al., 2015; 
Matsuoka et al., 2016)

• Haven’t (yet) examined returned 
sample from carbonaceous 
asteroid

Gillis-Davis, J. et al., LPSC 2015
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Searching for Features in CRISM Data
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CRISM

Fraeman et al., 2014



Broad Feature at 0.65 μm

21Fraeman et al., 2014



OSIRIS Data from Rosetta
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Pajola et al., 2013

• OSIRIS on Rosetta spacecraft also 
collected spectra from Phobos
during Mars flyby

• Data were consistent with previous 
studies



Jan. 2016 OMEGA Observation
53 km above Phobos (ORB 15260) 

23Spectra courtesy B. Gondet
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Feature at 2.8 μm 

24Fraeman et al., 2014



Vilas et al., 1998 Rivkin et al., 1996; Rivkin et al., in prep

Similarity to Low-Albedo Asteroids

0.65 μm Feature 2.8 μm Feature
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Scenario 1: Phyllosilicate

26Fraeman et al., 2014



Scenario 2: Space Weathering

27Fraeman et al., 2014



Thermal Infrared Measurements
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Glotch et al., 2015

Indicates low Si content if space weatheredSurface hydration?
Carbonates + silicates



Key Conclusions
• Phobos and Deimos are darker than even most 
space weathered materials

• Likely have carbonaceous chondrite-like 
compositions because they lack mafic absorptions 
and are spectrally similar to CM carbonaceous 
chondrites or Tagish Lake  

• Pair of spectral features observed similar to those 
on low albedo asteroids

• To argue that moons formed in situ rather than by 
capture of primitive bodies requires carbonaceous 
materials to have been added to the Martian 
system during accretion or a late stage impact

29
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Phobos Surface Geology

31Wählisch, M., et al., (2013), http://dx.doi.org/10.1016/j.pss.2013.05.012i 



Want to learn more?

• http://sservi.nasa.gov/event/planetary-evolution-
phobos-and-deimos/

• The “Science and Exploration of Phobos and Deimos” 
series was jointly organized and led by SSERVI teams at 
University of Central FL and Brown University/MIT with 
many SSERVI-affiliated institutions participating.  

• 13 recorded seminars given by leaders in the field with 
associated discussion.

• Also includes great reading list.

32

http://sservi.nasa.gov/event/planetary-evolution-phobos-and-deimos/


Space Weathering

• Catch all phrases for processes that affect spectral 
properties of materials due to their exposure in the 
space environment

• Biggest drivers are solar-wind irradiation and 
micrometeorite impacts

• Effects of space weathering known to be different for 
different solar system bodies

• Moon = production of nanophase Fe that darkens and 
reddens, observed in returned lunar samples (Hapke, 2001; 
Pieters, et al., 2000)

• Itokawa = production of FeS as well (Noguchi et al., 2011)
• Vesta = little evidence for space weathering (Pieters et al., 

2012)
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Composition to help Constrain 
Internal Structure
• Once we know composition, we can use it to make 

assumptions about other physical properties, like 
internal structure

• Helps constrain knowledge of dissipative orbital 
properties, which is key to understanding past 
evolution of orbits (e.g. Lambeck 1979; Mignard
1981)

• See Rosenblatt, 2011 for thorough review of links 
between internal structure and origin 
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Internal Structure

• MRO and MEx allow for 
improved estimates for 
Phobos mass and volume 
(Andert, et al., 2011; 
Jacobson, et al., 2010, 
Willner, et al., 2013)

• Ph density: 1.86 ± 0.013 g cm-
3

• D density: 1.490 ± 0.190 g 
cm-3

35Rosenblatt, 2011

DTM of Phobos from Willner, et al. 2013 created using stereo-photogrammetric 
analyses of 100m/pixel HRSC and Viking Orbiter data



Internal characteristics & surface 
manifestations

36
Murchie et al., 2013



Image Credit: Victor Dang and the Caltech Space Challenge Explorer Team

Future Exploration
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Spacecraft Observations
• Mars flybys

• Mariners 4, 5, and 6
• Rosetta

• Mars orbiters
• Mariner 9
• Viking orbiters 1 & 2
• Phobos 88
• Mars Global Surveyor
• Mars Odyssey
• Mars Express (MEx)
• Mars Reconnaissance Orbiter (MRO)

• Surface of Mars
• Viking Landers 1 & 2
• Pathfinder
• Spirit & Opportunity
• Curiosity

38
List source: Duxbury et al., 2014

Phobos and Deimos as seen from the 
Martian surface by Curiosity on August 1st, 
2013.

Image credit: NASA/JPL-Caltech/Malin
Space Science Systems/Texas A&M Univ.
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Red and Blue Units

Basilevsky et al., 2014
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