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Abstract

Although Mars rover missions have been highly successful
in accomplishing scientific objectives, mission productivity
is limited by challenges stemming from the need for com-
manding ground-based targeted observations under commu-
nication constraints imposed by the large distance between
Earth and Mars. With an aging fleet of sun-synchronous re-
lay orbiters, the opportunities for regular communication with
rovers may become even more limited. In addition to on-
board planning, robust navigation, and health assessment,
there are strategies to make future rovers more self-reliant by
enabling them to perform autonomous scientific characteri-
zations of new areas during periods without an opportunity
for ground-based targeted observations. In particular, we have
studied how a ”walkabout” strategy, in which an initial high-
level characterization of a region is used to informed sub-
sequent passes with specific targeted observations, was used
successfully during the investigation of Pahrump Hills by the
Mars Science Laboratory. Inspired by this approach, we have
identified several capabilities that could allow a rover to au-
tonomously perform some of these initial high-level charac-
terization steps. In this paper, we describe technologies for
identifying specific geologic units, regions, or features of
interest, identifying areas of contact between two adjacent
units, detecting and determining the orientation of layering
within rock units, identifying novel and interesting features,
and planning observations of regions with different sampling
strategies using remote sensing instruments. The observations
acquired with these approaches are driven by scientists’ guid-
ance and can provide scientists with data to help inform their
decisions about where to make more resource-intensive tar-
geted observations.

Introduction
Among the many challenges of operating a mobile space-
craft on the surface of another planet are constraints on com-
munication with the vehicle. Due to the inevitable delay
in communications traveling over interplanetary distances
at the speed of light, direct remote operation is not possi-
ble. Instead, for the Mars Science Laboratory (MSL) Cu-
riosity rover, scientists and operators typically plan at least
one sol, or Martian day, of activities for the rover to per-
form. This plan is uplinked to the rover, which carries out
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activities and transmits science results, telemetry, and im-
ages back to Earth through relay orbiters such as the Mars
Reconnaissance Orbiter (MRO). Operators usually do not
begin planning for the next sol’s activities until they have re-
ceived updated rover state information, especially after the
rover has driven to a new location. Current relay orbiters like
MRO provide regular passes several times every day. How-
ever, other relay orbiters that would act as a replacement for
MRO in case of any failure do not have orbits with regular
over-flights. With these replacement relay orbiters, it could
be several sols before the rover is able to communicate its
status back to Earth.

To ease the challenges caused by the need for regular
communications to operate a rover, we are exploring tech-
nologies to make future rovers more “self-reliant.” Self-
reliant rovers should be able to take a set of high-level goals
rather than specific, precisely defined activities, and reliably
carry out the operators’ intent even after several sols with-
out communication. Technologies to enable these goals in-
clude robust navigation, onboard health assessment, local-
ization, and onboard planning. In this paper, we focus on
a set of technologies that enable satisfying high-level sci-
ence objectives. First, we describe the results of a case study
in which we identified the need for specific capabilities to
achieve high-level science objectives when ground-targeted
activities are not possible (Gaines et al. 2016). Then, we dis-
cuss several existing technologies currently used for science
autonomy onboard MSL and other missions. Finally, we dis-
cuss new technologies we have developed to enable accom-
plishing science objectives.

Case Study: Pahrump Hills
On Sol 780, MSL arrived at an area called Pahrump Hills
containing exposed outcrops of sedimentary rock (Stack et
al. 2015). Scientist knew that they wanted to spend some
time taking detailed measurements such as drill samples at
several locations at Pahrump Hills, but more information
would be useful in determining the best places to acquire
these measurements. The scientists devised a “walkabout”
strategy in which they would drive around the Pahrump Hills
area several times. The pass would be devoted to perform-
ing a high-level characterization of the area involving high
resolution imagery of select, interesting portions of the out-
crop and remote sensing observations using the ChemCam



Figure 1: The remote
sensing mast of the Mars
Science Laboratory Cu-
riosity rover contains the
ChemCam and MastCam
instruments.

Laser-Induced Breakdown Spectroscopy (LIBS) instrument
(Wiens et al. 2012) and the high resolution MastCam cam-
eras (Malin et al. 2005). Both instruments are located on the
rover remote sensing mast (see Figure 1). ChemCam uses
a laser to vaporize rock targets from a distance of several
meters away and records the light emitted from the result-
ing plasma to determine the rock’s elemental composition.
Subsequent passes of the walkabout would be devoted to
more time-consuming measurements and sampling activi-
ties of the most interesting locations identified during the
first pass.

The walkabout strategy naturally lends itself to support
by autonomous science capabilities. In particular, a self-
reliant rover could spend several sols performing an ini-
tial area characterization as in the first pass of a walkabout
when ground-based targeting is not possible. Armed with
the information acquired during this first pass, scientists can
command a set of specific measurements after the rover has
had a chance to communicate its results to the Earth. To
validate this strategy in a real-world operational scenario,
autonomous characterization capabilities were recently em-
ployed successfully as part of a walkabout strategy during
CanMars 2016 Mars Sample Return Analogue Deployment
in Utah (Francis, Gaines, and Osinski 2017).

Some capabilities required for initial area characterization
during the first pass of a walkabout include identifying re-
gions of interest, and planning observations of these regions
using particular sampling strategies. Both what makes a re-
gion interesting and what strategy to use for sampling each
region are driven by science objectives. Examples of inter-
esting regions include specific geologic “units,” “contacts”
between two adjacent units (where they meet each other),
geologic features such as veins of material within units, or
unexpected, novel features. Sampling strategies include se-
lecting spatially diverse locations across a large piece of ex-
posed outcrop, taking LIBS measurements across layers of
sedimentary rock to see how composition varies between
layers, or following a vein or contact along its length with
several LIBS measurements or images. We describe tech-
nologies to enable these capabilities below.

Related Work
The new technologies we propose to enable self-reliant
rovers can be seen as an extension of existing, success-
ful approaches to scientist-guided autonomy for increasing

the productivity of surface and orbital exploration missions.
The Autonomous Exploration for Gathering Increased Sci-
ence (AEGIS) system, which was developed for the Mars
Exploration Rover (MER) Opportunity (Estlin et al. 2012)
and was recently deployed for operational use on on MSL
(Francis et al. 2016), is one key example. AEGIS uses a spe-
cialized algorithm called Rock Segmentation Through Edge
Regrouping (Rockster) to locate rocks, patches of outcrop,
or veins within an image (Burl et al. 2016). Then, rank-
ing rules use features such as size, shape, and albedo to se-
lect targets according to scientists’ preferences. AEGIS typ-
ically runs on board after a drive, but before operators on
the ground have had a chance to select specific targets for
measurement. On MSL, AEGIS is used to command mea-
surements with the ChemCam instrument, providing scien-
tists with an additional level of characterization of a new
area (beyond standard post-drive imaging) before any tar-
geted observations are possible.

Another key technology used to enable autonomous ex-
ploration is the TextureCam software (Thompson et al.
2012). TextureCam is a pixel-wise classification algorithm
that uses a random forest model trained on a set of labeled
images. The generality of TextureCam allows it to be used
for identifying everything from specific geologic units for
surface missions to atmospheric features such as clouds seen
from space during orbital missions (Chien et al. 2016). Many
of the new technologies we propose use the output of Tex-
tureCam, a probability that each pixel belongs to a class of
interest, as an input for processing and target selection.

Finally, while TextureCam can be used to identify known
regions of interest for which labeled training images exist,
there are other geologic features that might be interesting for
their novelty. To identify such features, we explore the use
of several novelty detection algorithms. One such algorithm
is Discovery through Eigenbasis Modeling of Uninteresting
Data (DEMUD), which has been successfully used for nov-
elty detection in ChemCam LIBS spectra (Wagstaff, Lanza,
and Wiens 2014). DEMUD works by building a model of
“uninteresting” data; that is, data that has already been ob-
served and characterized. Any new data that is unlikely un-
der this model is flagged as “interesting,” then incorporated
into the model of uninteresting data. By continually adjust-
ing the model, DEMUD learns to expect examples after they
have been observed and are thus no longer novel. Another al-
gorithm explored for novelty detection is the Isolation For-
est (Liu, Ting, and Zhou 2008). An isolation forest uses the
average number of random splits in a set of decision trees re-
quired to separate one example from the others as a measure
of that example’s novelty. The approach assumes that novel
examples can be separated from the rest of the data with rel-
atively few splits. We explore both DEMUD and isolation
forests as alternative approaches to novelty detection.

Novel Tools For Scientist-Guided Autonomy
Now, we describe building upon existing work to develop
new technologies for geologically characterizing a new area
on Mars. Generally, these technologies fall into two cate-
gories: those that enable finding specific targets or regions of



interest and those that enable designing follow-up measure-
ments given selected targets. Navigation camera or NavCam
images are used for finding regions of interest, and NavCam
panoramas are typically acquired after driving into any new
area. We assume that such images are available as an in-
put into to autonomous science processing. We begin by de-
scribing a technology for finding a specific type of interest-
ing region, a “contact” between two adjacent geologic units.

FORC: Finding Oriented Regions of Contact
A geologic contact between two units can reveal key infor-
mation about the history of formation of the units as well as
what occurred in the intervening time between when each
of the units were deposited. In principle, software such as
TextureCam can be used to directly identify contacts be-
tween two units. However, challenges prohibit this approach
in practice. In particular, TextureCam requires training data
consisting of example images of the region of interest. How-
ever, it is possible that while many examples of two units
have been seen, there has not yet been a clear example of
the contact between the two units. This suggests that a more
robust approach might first identify geologic units and then
search for contacts between them.

We take the approach of identifying contacts after iden-
tifying units using the Finding Oriented Regions of Con-
tact (FORC) algorithm. For geologic units A and B, FORC
works by first running TextureCam on board to produce
probability maps PA and PB containing the probabilities
that each pixel in an image I belongs to units A or B, re-
spectively. We assume that the orientation of the contact be-
tween A and B (that is, whether A is above or below B
stratigraphically) is known a priori from orbital context im-
ages. The FORC algorithm allows scientists to specify an
arbitrary orientation angle θ between the two contacts. For
example θ = 90◦ corresponds to B being directly above A.
Scientists also specify a scale in pixels of the size of the min-
imum size of the rock units expected to be exposed around
the contact. Then, PA and PB are translated by this amount
in the direction θ and −θ, respectively. The resulting trans-
lated matrices are multiplied component-wise. This corre-
sponds to the probability that each pixel is in the direction of
θ from unit A and in the direction of −θ from unit B. Pixels
with a high value of this probability are located within the
oriented contact region. This probability is called the “con-
tact score.” After the contact score is derived, any number of
algorithms (some of which are described below) can be used
to select targets for observation based on this score.

An example using the FORC algorithm is shown in Fig-
ure 2. At an area known as Marias Pass, the Curiosity rover
encountered a contact between the ligher-toned Murray unit
and darker-toned Stimson unit (Newsom et al. 2016). Us-
ing previously acquired NavCam images, we trained Tex-
tureCam to label each of these units. Then, we applied the
trained models on an image of the contact from Sol 992.
Using the output of TextureCam, the FORC algorithm was
then used to produce a contact score, shown on the far right
of Figure 2. The pixels with contact score exceeding 0.5 are
highlighted. Although there are some small false-positive re-
gions, the approach successfully identifies most of the con-

tact region between the two units.

FOLD: Fast Oriented-Layer Detector
Layering or stratification is another essential feature used to
geologically characterize a new area. Layered rocks can be
formed by the deposition of materials via water, air, or other
geological processes such as lava flows. Understanding the
depositional environment of a rock can inform the condi-
tions present at the time of its formation, which can give
clues about past habitability.

Existing approaches such as TextureCam can be used to
directly identify regions with layering (Wagstaff et al. 2013).
However, in addition to identifying these regions, it is also
desirable to infer the orientation of layering within each re-
gion to inform follow-up measurement strategies. For ex-
ample, it could be desirable to acquire LIBS measurements
across the layers within a rock to determine how the depo-
sitional environment changed over time. TextureCam is not
directly capable of determining layer orientation, so it can-
not inform how to acquire a measurement of an identified
target.

The Fast Oriented-Layer Detector (FOLD) algorithm is
designed to both detect and determine the orientation of lay-
ers within a scene. FOLD works by first computing the gra-
dient of an image, which quantifies the magnitude and di-
rection of change in image pixel intensities at each loca-
tion. Then, within a particular region of the image, a his-
togram of gradient directions weighted by gradient magni-
tude is computed. A probabilistic mixture model, composed
of a Gaussian “signal” component and a uniform “noise”
component, is then fit to the data. The resulting maximum-
likelihood (ML) model produces an effective signal-to-noise
ratio (SNR) for the detection, as well as an estimate of the
layer orientation. By using a histogram-based approxima-
tion of the distribution of gradient directions, the algorithm’s
time and memory complexity is linear with respect to the
size of the input image.

For the first step of gradient computation, it is beneficial to
first smooth a 16-bit version of the image using a Gaussian
kernel. To reduce memory consumption, the gradient magni-
tude is represented using a 16-bit integer value, scaled down
by a factor of

√
2. Similarly, the gradient angle is represented

using an 8-bit integer, representing one of 256 evenly spaced
“bins” between 0 and π. Gradient directions are considered
equivalent up to the sign of the gradient vector.

After the gradient is computed for each pixel in the im-
age, a histogram is computed for some subset of the pix-
els in the image corresponding to a region of interest. Since
the gradient angles have already been discretized into 256
bins, these are the bins used for the histogram. The gradient
magnitude is used as a weight for each pixel’s correspond-
ing gradient direction. Intuitively, this is because the largest
gradients correspond to the strongest visual evidence of lay-
ering.

Given a histogram for a region of interest, the goal is to
fit a probabilistic model that treats the gradient angle dis-
tribution as a mixture of a uniform noise distribution and a
Gaussian distribution centered about the direction of layer-



Figure 2: The Murray–Stimson contact at Marias Pass. From the original image (left), the Murray and Stimson units are
identified (middle) to derive a contact score (right) using FORC. The regions with the highest-value scores are highlighted.

ing. Formally, this model is

P (θ | α, µ, σ) = αN[0,π] (θ | µ, σ) + (1− α)U[0,π] (θ) ,
where α is the fraction of pixels coming from the layer-
ing distribution,N[0,π] is the “wrapped” normal distribution
with parameters µ and σ, and U[0,π] is the uniform distri-
bution over [0, π]. Because angles only take values on the
interval [0, π], the wrapped normal distribution, defined as

N[0,π] (θ | µ, σ) =
1√
2πσ

∞∑
k=−∞

e−((θ+kπ)−µ)
2/2σ2

,

is used to “wrap” the normal distribution within that interval.
In practice, the terms of the infinite sum become negligible
when |k| exceeds a small multiple of σ/π.

An expectation–maximization (EM) approach is used to
determine a maximum-likelihood (ML) estimate of the pa-
rameters α, µ, and σ. Given a histogram bin representing
angle θi with probability mass mi, we start by fixing the
distribution parameters and computing weights wi, which
correspond to the estimate of the fraction of the pixels in
that bin coming from the layering distributionN[0,π]. This is
the E-step:

wi ←
N[0,π] (θi | µ, σ)

N[0,π] (θi | µ, σ) + U[0,π] (θi)
.

For the first iteration, these weights wi are all set to 0.5.
Then, fixing the weights, the ML estimates of the other

parameters are computed. This is the M-step:

α←
∑
i

wimi

x←
∑
i wimi cos(2θi)∑

i wimi

y ←
∑
i wimi sin(2θi)∑

i wimi

µ← 1
2 arctan2 (y, x)

σ ←
√
− 1

2 ln
(
x2 + y2

)
.

These two steps repeat until the distribution parameters
converge, or a maximum number of iterations has been ex-
ceeded. In practice, only on the order of 10 iterations are

required for convergence. After convergence, an “SNR” es-
timate for the detection can be computed as α

1−α .

There are two primary modes of operation for FOLD.
First, the above procedure can be run for a single rectangu-
lar region within the image, generating a single estimate of
the SNR and average orientation µ within that region. This
is useful for small field-of-view instruments that might have
a layered rock fill the area they observe. However, for wide
field-of-view instruments, a second mode of operation al-
lows sliding a small rectangular window across the image
and repeating the analysis for each pixel (or every nth pixel)
within the image. This allows generating a heat map of re-
gions within the image likely to contain layered targets and
a map of the layer orientation at each point within the image.

Figure 3 shows the output of FOLD operating in “single-
region” mode for a small field-of-view ChemCam Remote
Micro-Imager (RMI) image. On the left, the 256-bin his-
togram is shown along with the derived ML model in red.
The SNR, derived from the α parameter, is shown at the
top of the figure. On the right-hand side of Figure 3, the
original image is shown with a solid line illustrating the ori-
entation of the inferred lamination direction µ, along with
dashed lines illustrating µ± σ. Since the RMI has a circular
field of view, a circular region is used when computing the
histogram.

To evaluate the discriminative power of SNR for deter-
mining when layering is present in an RMI image, a sample
of 50 RMI images were selected for evaluation. Of these, 25
contain visible layering while 25 do not. Using only a thresh-
old on SNR to distinguish layered from unlayered rocks, it
is possible to achieve an area under receiver operating char-
acteristic (ROC) curve (AUC) of 0.922.

Figure 4 shows an example of FOLD operating in
“sliding-window” mode. The image was taken by the MSL
navigation camera, and shows a layered butte within the
“Murray Buttes” region of Gale Crater. The image on the
right-hand side shows a heat map (white is the “hottest”) of
the SNR at each pixel within the image. Small black bars
show the orientation of layering at each pixel. FOLD not
only detects the layering within the butte, but also the layer-
ing of blocks that have fallen from their original locations.
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Figure 3: The output of FOLD on a small field-of-view RMI image. The histogram and ML model is shown on the left, and the
inferred layer orientation with standard deviation is shown over the image on the right.

Novelty Detection
In addition to identifying specific geologic units and fea-
tures known to be interesting, there is also a need to iden-
tify novel characteristics of a new area that have not been
seen in previously-explored areas or stand out from what is
expected. For example, features such as concretions, veins,
or meteorites are worthy of remote sensing measurements
during an initial characterization.

We have explored two algorithms for novelty detection,
DEMUD and isolation forests. These algorithms can be ap-
plied in a straightforward way to NavCam images using a
sliding window within each image. Both algorithms can be
trained on a set of previously-observed images to learn what
is no longer novel. Then, applying a learned model produces
an outlier score for each location as a sliding window is
moved over a new image on board.

Example results for the two algorithms are shown in Fig-
ure 5. While future experiments will be aimed at character-
izing the performance of these approaches under real-world
operational conditions, preliminary results show that out-
lier detection approaches do select visually salient regions
in images that are unlike the background sand or gravel. The
isolation forest performs well when the raw pixel intensi-
ties within the window are used as feature vectors, whereas
DEMUD performs better when higher-level histogram of
oriented gradients (HOG) features are extracted from the
window. Since HOG features could be more expensive to
compute, isolation forests likely have more favorable com-
putational performance for onboard novelty detection.

DOTS: Diverse Onboard Target Selection
After TextureCam, FORC, FOLD, or another algorithm se-
lects a region of interest for measurement, a self-reliant
rover must select specific points for measurement for instru-
ments like ChemCam. The Diverse Onboard Target Selec-

tion (DOTS) algorithm addresses the scenario in which sci-
entists are interested in acquiring “diverse” measurements
of a geologic region. That is, if TextureCam detects sev-
eral similarly relevant but disjoint geologic regions within
a scene, scientists might prefer to take a measurement of
each separate region rather than taking several measure-
ments within one region. Such a measurement strategy al-
lows scientists to assess the geochemical diversity of a scene
rather than focusing measurements on one isolated area.

DOTS is designed to pixel-wise scores such as Texture-
Cam probability or FORC contact score and produce a set
of specific point targets to be measured. DOTS works by
greedily selecting a target that has the highest probability of
belonging to a region of interest, then removing from con-
sideration all points that can be reached from the target by
a path that stays (with high probability) inside a contiguous
patch of the same region. This process continues until the
desired number of targets have been found, or no relevant
geological regions remain unmeasured.

As an example, suppose scientists are interested in au-
tonomously measuring gray, freshly exposed rock that is
broken after the rover drives over it (see Figure 6). Texture-
Cam can be trained on the ground using previous example
images of broken rocks. The trained model can be uplinked
to the rover to predict the probability that each pixel in a new
image corresponds to the same feature. Given the probability
map Pij , DOTS proceeds by first processing this probabil-
ity map to find sufficiently large regions of interest. This is
accomplished by using a Gaussian filter with width σ corre-
sponding to the minimum desired region size. This smooth-
ing process ensures that any larger regions with consistently
high probability of belonging to the class of interest will be
preferred over smaller regions. Let the smoothed map pro-
duced from Pij be called Sij .

Next, DOTS selects the point in the smoothed map Sij



Figure 4: Results for FOLD on an MSL navigation camera
image of a butte in the Murray Buttes region of Gale Crater.
The colors on the right-hand side illustrate the SNR for lay-
ering measured by FOLD, and the small black bars show the
inferred orientation direction for the highest SNR regions of
the image.

Figure 5: Example novelty detection results using the DE-
MUD algorithm (left) and isolation forests (right). Red
boxes indicate regions where a sliding window had a high
outlier score.

Figure 6: Example image showing targets selected by DOTS
to measure freshly exposed gray rock. Five proposed targets
are indicated with red marks, order from the highest priority
(1) to the lowest priority (5).

with the largest value. This point (u, v) is chosen as the first
target, unless the value falls below some specified threshold
(and is therefore unlikely to belong to the region of interest).

If the point is selected as a target, then a linkage mask Lij
is computed for all pixels in the image. The linkage mask at
(i, j) is defined as the minimum value of S along a path from
(i, j) to (u, v), where the path is selected to maximize this
value. The mask Lij can be computed using a modified ver-
sion of Dijkstra’s algorithm. First, the point (u, v) is added
to a max-on-top heap structure with value Suv . At each iter-
ation, the highest-valued unvisited point is popped from the
heap, and each of its neighbors are added to the heap with a
value equal to the minimum of the heap value and the neigh-
bor’s value. This continues until all pixels have been visited,
or the value at the top of the heap is sufficiently close to zero.

The linkage mask represents a lower bound on the prob-
ability that any pixel in the image is connected to the target
pixel (u, v) by a path that remains with the region of inter-
est. In the next iteration of target selection, it is desired to
exclude such pixels. Therefore, the smoothed map S is up-
dated using the rule S← S·(1− L) since 1−L corresponds
to the logical NOT operation applied to the linkage map. That
is, this update rule produces a map of regions of interest that
are not linked to the previous target.

After the update, the process is repeated until the desired
number of targets are selected, or all pixels in S are below
some threshold (i.e., there are no more relevant targets to se-
lect). As shown in Figure 6, DOTS does in fact select diverse
pieces of freshly exposed rock rather than targeting multiple
measurements on the same piece of broken rock.

OnRAMP: Onboard Raster and Mosaic Planner
With the ChemCam LIBS instrument, it is common to take a
series of measurements in a line or grid to cover a region of



interest. Similarly a MastCam mosaic comprised of several
images can be used to document a region that is too large
for a single image frame. In both cases, enabling a rover to
emulate ground-targeted behavior requires the capability to
plan rasters and mosaics on board. We have developed the
Onboard Raster And Mosaic Planner (OnRAMP) algorithm
to provide this capability. As with DOTS, OnRAMP works
by using the output of other software such as TextureCam
to identify a feature or region of interest. Then, using a dy-
namic programming algorithm, OnRAMP plans a series of
point measurements or image frames to construct a raster
or mosaic that optimally measures the identified feature or
region. OnRAMP accounts for instrument pointing uncer-
tainty and constraints as part of its optimization. OnRAMP
is designed to run efficiently onboard a spacecraft with lim-
ited memory and computational requirements.

OnRAMP operates in two modes: planning a raster and
planning a mosaic. However, the fundamental approach is
the same for each mode. We begin by describing the pro-
cess of planning a raster. As an example, scientists might be
interested in identifying veins to measure within the field-of-
view of the ChemCam RMI (see Figure 7, left). Using previ-
ously acquired images of similar features, scientists can train
a TextureCam model to identify veins within new images.
More precisely, TextureCam produces a map of the proba-
bility that each pixel in the image corresponds to a vein. An
example is shown in Figure 7 (center).

Given the probability map produced by TextureCam, the
next step is to translate the probability of selecting a particu-
lar location for measurement to the probability that the fea-
ture of interest will actually be measured, taking instrument
pointing error into account. Assuming Gaussian pointing er-
ror, this can be accomplished by convolving a Gaussian filter
with the probability map. The filter should have a width cor-
responding to a 1-σ pointing error. An example is shown in
Figure 7 (right).

After the filtered probability map is computed, the indi-
vidual raster points can be planned. The raster points are
selected such that the instrument only slews monotonically
along each of the pointing axes (azimuth and elevation). For
ChemCam, this direction is typically up and to the left (neg-
ative azimuth and positive elevation). Slewing in one direc-
tion leads to more accurate pointing because it avoids “back-
lash” in the gearing mechanisms that drive the pointing of
the instrument mast. Furthermore, it is desirable to require
some minimum azimuth and elevation separation between
targets, in case the instrument slightly overshoots a target
due to pointing error. For example, the minimum separation
can be set equal to the 3σ pointing error so that even if one
target is missed, the instrument can continue slewing in the
same direction to reach the next target.

The raster points can be selected using a recursive algo-
rithm made efficient with dynamic programming. The recur-
sive nature of the solution follows from the following ob-
servations. First, for a 1-point raster, the expected value of
selecting a particular point in the image to measure is sim-
ply the value of that point in the filtered probability map (as
in Figure 7, right). Then, for an optimal k-point raster, the
value of starting at any point in the image is equal to the

value of that point in the probability map plus the maximum
value of any (k− 1)-point raster that starts up and to the left
of that kth point by the minimum separation between points.

The simple recurrence relationship described above can
be used to design a dynamic programming algorithm to find
an optimal set of raster points. Let P be the filtered proba-
bility, with Pij the value at row i, column j. Let Rk

ij be the
value of starting a k-point raster at point (i, j). The base case
is a 1-point raster, for which R1 = P. Then, if the minimum
point separation is s pixels, the recurrence relation is:

Rk
ij ← Pij + max

0 ≤ u ≤ i− s,
0 ≤ v ≤ j − s

Rk−1
uv . (1)

We can use a memoization process to compute this recur-
rence efficiently. Starting with R1, we can use this relation
to compute R2, followed by R3 and continuing until the de-
sired Rn is computed for a n-point raster.

An example showing the memoization process is given
in Figure 8. The process starts in the top left corner with
the R1 = P matrix representing the value of choosing any
single point for a raster. Moving left, R2 is computed using
the expression in Figure 1. This continues until the lower
right-most R5 raster value matrix is computed.

Selecting the raster points requires a final, second pass
across the value matrices Rk. First, the point p1 with maxi-
mum value within Rn is chosen. Then, the point with max-
imum value in Rn−1 that is up and left of p1 by at least s
pixels is selected as the second point, p2. The process con-
tinues until all n points are selected. The running example
with 5 points is shown in Figure 9.

Algorithm 1 OnRAMP algorithm for rasters
Require: Input image I, minimum separation s, pointing

error σ, raster points n

P← TextureCam(I)
P← GaussianFilter(P, σ)
R1 ← P
for k ← {2 . . . n} do
Rk
ij ← Pij +max 0 ≤ u ≤ i− s,

0 ≤ v ≤ j − s
Rk−1
uv

end for

plast ← (Height(I),Width(I))
for k ← {n . . . 1} do
pn−k+1 ← argmax

{
Rk
ij | (i+ s, j + s) ≤ plast

}
plast ← pn−k+1

end for
return {p1, . . . , pn}

An overview of the OnRAMP algorithm described above
for planning rasters is shown in Algorithm 1. The algorithm
takes an image, a minimum separation, pointing error σ, and
desired raster points n, and it produces a set of raster points
{p1, . . . , pn}.

A few small adjustments to the algorithm above can be
used to plan image mosaics instead of point-measurement



Figure 7: Left: A ChemCam RMI showing a small vein target, roughly one centimeter across. Center: A map showing the
TextureCam-determined probability that each pixel corresponds to vein in the image. Red indicates higher values and blue
indicates lower values. Right: An example showing a probability blurred with a Gaussian filter to account for instrument
pointing error.

Figure 8: An example showing memoization to compute the
value of choosing a point to begin a 1-point (R1, top left) to
5-point (R5, bottom right) raster.

rasters. First, the input image for a mosaic is likely to be a
wide field-of-view NavCam image rather than an RMI. Tex-
tureCam or FORC can again be used to identify the likeli-
hood that each pixel is a region of interest within the image.

Since an image covers a wide spatial area, rather than us-
ing a Gaussian filter, a Uniform filter is convolved with the
TextureCam output and used to compute the expected per-
cent of an image frame that contains the region of interest.
The resulting map is the expected fraction of an image cen-
tered at each point that contains the region of interest. Thus,
each point in the filtered image contains information about
the value of all possible image frames of a given size. This
process assumes that the NavCam is undistorted and that the
NavCam and MastCam are roughly co-boresighted so that
the MastCam frame is a rectangular region within the Nav-
Cam frame.

Selecting a sequence of MastCam frames to cover a region
is nearly the same as for rasters. The only difference is the
constraint between selected frames. Instead of requiring sep-
aration by some minimum amount, a mosaic requires over-
lap by some minimum amount. So the value of a k-frame
mosaic is the value of the kth frame at a given point plus the
value of the of a frame that is to the left of the kth frame
by a little less than a frame width, and translated vertically
by some maximum amount up or down. An example image
sequence generated with this recurrence relation is shown in
Figure 10. Although horizontal mosaics are more common,
a different recurrence relation can be used to find vertical
mosaics.

Use Cases
The set of tools described above can be used to enable
scientist-guided autonomous exploration in new areas dur-
ing periods when ground-based targeting is not possible due
to communication constraints. Scientists can express their
intent for observations using various combinations of these
tools. A few examples illustrating how these tools can be
used together are described below.



Figure 9: An example showing how raster points are se-
lected, working backwards from the memoized value ma-
trices. At each step, the black dot is selected as the kth raster
point, and the subsequent k− 1 points must be in the region
to the upper-left labeled with the black box. The resulting
5-point raster is shown in the lower right.

Figure 10: An example mosaic using the OnRAMP algo-
rithm given a region of interest identified by finding the con-
tact between two rock units.

Diverse LIBS of a Geologic Unit
Suppose the rover is driving into an area with an exposed
outcrop of bedrock that has been seen previously. Scientists
might be interested in characterizing the composition of this
bedrock for comparison to the composition in the previously
observed area. Using previous image of this bedrock unit,
scientists can train a TextureCam model to recognize the
same unit in the new area. After driving into a new area, the
standard post-drive images are analyzed to identify regions
containing the bedrock, then DOTS is used to select several
targets for measurement.

High Resolution Images of a Contact Region
Expanding of upon the previous scenario, suppose that a
new area contains two geologic units A and B that are in
contact with each other, as seen from orbital imagery. Scien-
tists can train TextureCam to recognize bothA andB. Then,
scientists can specify using the FORC algorithm that they
are interested in regions where unit B overlies unit A. After
finding such regions, scientists can specify that OnRAMP
should be used to plan and acquire an image mosaic of the
contact region.

LIBS of a Layered Unit
Suppose an area contains a known, layered unit, and scien-
tists would like to acquire LIBS measurements across the
layering to characterize changes in the depositional environ-
ment over time. Again, scientists can use either TextureCam
or the FOLD algorithm to identify the unit of interest, then
DOTS to select several targets for follow-up measurement
with a LIBS instrument. For each LIBS measurement, the
RMI camera can be used to determine the orientation of
the layering, then a linear raster can be planned with points
spaced in azimuth and elevation to traverse the layers.

Novelty Detection During a Strategic Drive
The rover might spend several sols driving from one area of
interest to another during periods without ground-targeted
observations. In such scenarios, it is important to acquire
measurements of any novel or unexpected features, since
it is unlikely for the rover to return for follow-up measure-
ments. Scientists can specify their intent to search for nov-
elty periodically during a drive. Then, either DEMUD or an
isolation forest can be used to locate novel features during
a drive and acquire either high-resolution images or LIBS
measurements.

Future Work
We plan to test these capabilities on a testbed rover in the
“Mars Yard” at JPL over the next year. The first test will in-
volve a basic scenario to evaluate the FORC algorithm on
a simulated contact region constructed using two different
toned flagstone rocks. The contact will be identified, and
several follow-up images with a mast camera will be ac-
quired. After further development, the autonomous science
tools will be integrated with the onboard planner to allow
trading off between several science goals during characteri-
zation. Finally, a full integration with other self-reliant rover



systems such as robust navigation will allow simulating sce-
narios in which scientist-guided autonomy is employed both
during a strategic drive as well as after reaching a scientific
area of interest. These demonstrations will enable an eval-
uation of the various scientist-guided autonomy tools in a
realistic environment.

Conclusion
In addition to robust navigation and onboard goal planning,
the ability to geologically characterize an area of interest
autonomously is important to increasing the productivity
of rover missions when there are limited opportunities for
ground-in-the-loop commanding. We have developed a set
of tools that can be used enable such a characterization using
guidance from scientists, who specify the types of features
they are interested in observing, how to design measure-
ments of those features, and the relative importance of ac-
quiring each type of measurement. In particular, the tools we
describe enable the following capabilities: identifying geo-
logic units of interest, identifying regions of contact between
units, identifying the presence and orientation of layering
within rock units, identifying novel geologic features, select-
ing diverse targets for measurement, and designing rasters
or image mosaics to measure identified regions of interest.
Armed with this set of tools, future rovers can be instructed
by scientists to perform high-level characterizations of new
regions during periods without communication between the
rover and Earth. The measurements acquired during an ini-
tial, autonomous characterization can be used by scientists
to carefully select several key locations for more detailed,
resource-intensive analyses. By aiming to more fully utilize
the rover’s capabilities at all times, the technologies we have
developed will help sustain rover mission productivity even
in the face of communication constraints.
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