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Outline

• Status of current and proposed flight 
projects from the thermal subsystem 
perspective

• JPL/NASA mission roadmap
• Thermal technology challenges
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Status of current and proposed projects
From the thermal subsystem perspective
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Planned Europa Clipper Mission
(Courtesy of Dr. Tony Paris, JPL Europa Thermal Lead / Dr. Brian Carroll, JPL Europa Thermal 
Technology Lead)

• The Europa Clipper mission would 
place a spacecraft in orbit around 
Jupiter in order to perform a detailed 
investigation of the giant planet's moon 
Europa -- a world that shows strong 
evidence for an ocean of liquid water 
beneath its icy crust and which could 
host conditions favorable for life.

• Constraints for the spacecraft design 
include limited electrical power for 
survival heating, long mission lifetime 
(eight to twelve years), and tolerance 
for high radiation environments.

• An MPFL-based thermal control design 
is desirable for this application due to 
the potential for efficient reclamation of 
waste heat from electronics located 
within a compact radiation shielded 
“vault” for use as survival heat 
throughout the spacecraft.

• Radiation hardened pump controller 
electronics and sensors are being 
developed and tested for survivability 
in the Jovian environment
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Baseline Spacecraft Configuration
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Mars 2020 Rover
• Key functions of M2020 Rover Heat Rejection System (RHRS):

– Removal of waste heat from rover during Cruise phase of mission
– Removal of waste heat from rover and MMRTG during hot part of the day
– Recovery of waste heat from MMRTG during the cold part of the day
– Thermally couple RAMP masses to create large effective thermal mass to reduce 

temperature swings
• RHRS fluid tubes are embedded in RAMP to remove or add heat to keep 

the science and engineering hardware at safe operating and survival 
temperatures
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Mars 2020 Rover
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Mars 2020 Rover
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Mars 2020 RHRS Tube Routing on RAMP
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Surface Water Ocean Topography Mission

• Mission objective:  characterize ocean 
topography to a spatial resolution as 
low as 15 km and provide a global 
inventory of surface water

• LEO (77.6° inclination, 891 km)
• Accommodates seven instruments
• Challenging combination of thermal 

requirements
– Co-location requirements
– >1400 W peak thermal dissipation
– Heat fluxes ~2.5 W/cm2

– Stability requirements 0.05°C/min
• Thermal control subsystem utilizes a 

combination of LHPs and CCHPs
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WFIRST/AFTA Exo-Planet Finder

• Total Power: 1380W
– OBA: 1179W
– FOA: 201W, 64 control 

zones
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Orbiting Carbon Observatory-3
• The thermal control system utilizes the JEM-

EF Active Thermal Control System (pumped 
fluid loop)

• Four thermoelectric coolers cool the Optical 
Bench Assembly (OBA)

• Two heat exchangers (HXs) remove heat 
from four thermoelectric coolers (2 per HX)

• A “Cold Panel” provides structure and heat 
rejection for electronics

• Accumulators compensate for decreases in 
fluid density during transit

• Fluid filters provide compliance with JEM-EF 
ATCS usage

• Operational heaters provide thermal stability 
for AFE, OBA, and PMA
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NASA-ISRO Synthetic Aperture Radar (NISAR)

• NISAR will measure surface motion over span of 12 
days to study:

– Ice Sheet Collapse
– Earthquakes
– Volcanoes
– Landslides

• Thermal Challenges
– Thermal environment:  In order for the Instrument to 

observe both North and South Poles the Instrument is 
required to operate both sun facing and space facing

– Externally mounted boxes:  Due to space limitations 
and cable length requirements, the majority of the 
Instrument electronics are mounted to the exterior of 
the Instrument with radiators built into the high 
dissipation boxes

– Deployable boom for the Radar:  A segmented boom 
that deploys in orbit; Thermal control and analysis 
required for each of the five deployment phases

– Deployable reflector:  ASTRO Northrop Grumman will 
be supplying a deployable 12m aperture radar 
mounted on the deployable boom

• The NISAR DSI Thermal System utilizes traditional 
thermal control materials and hardware for a largely 
passive thermal design

– Radiative coatings/PRTs/Thermistors/MLI/Thermal 
Isolation/Heaters/Mechanical Thermostats
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Mars CubeSat Orbiter (MarCO)
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MarCO will provide a real-time 
communication relay for InSight EDL
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Mars CubeSat Orbiter (MarCO)

• Transponder with high 
power density
– Dedicated thermal PWB 

Cu layers
– Custom Al thermal cover 

for FPGA
– High conductance chassis

• Radiator sized for S.S. -
10°C operation at 15 W

• Capability for ~ 3 hours 
transmit time

• SiO2 Al-K closeout on small 
non-radiator surfaces
– Reduces solar heat load 

near Earth
– Reduces SC heat loss 

near Mars

March 22, 2016 Pre-Decisional--For Planning and Discussion Purposes Only 14

MLI

MLI

Radiator

SiO2 Al-K

1 oz Cu 
layers

RFFPGA

Chassis
6061-T6 Al 
cover

Radiator

Conductive Path
Radiative Path

Thermal 
Vias



j p l . n a s a . g o v

Curiosity Rover—Thermal Status
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• Total odometry 
12,559 m 

• RTG output nominal 
at ~95-99We.

• Very slight decrease 
over time in the 
temperature of the 
RTG, RIPA pressure 
and RAMP 
temperatures.

• Thermal performance 
has been excellent.
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Curiosity Rover—Thermal Status
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Curiosity Rover—Thermal Status
• Robotic Arm (RA) Shoulder Mounting Bracket and 

Upper Arm Tube Temperatures
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Curiosity Rover—Thermal Status
• Rover Avionic Mounting Panel (RAMP) Temperatures
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NASA/JPL Mission Roadmap
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Planetary Science Roadmap
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Current and potential future missions
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Planetary Science Roadmap
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Current and potential future missions
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Planetary Science Roadmap

March 22, 2016 Pre-Decisional--For Planning and Discussion Purposes Only 22

Current and potential future missions
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Earth Science
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Current and potential future missions
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Astrophysics, Fundamental Physics & Technology
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Current and potential future missions



Thermal Technology Challenges
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Pumped Fluid Loop Reliability
(Courtesy of Dr. Tony Paris, JPL Europa Thermal Lead / Dr. Brian Carroll, JPL Europa Thermal 
Technology Lead / Dr. Gaj Birur)

• Long-term chemical 
analyses on the 
compatibility of the 
working fluid, 
irradiated CFC-11, 
with various wetted 
materials

• Pump life-testing:  on 
its 10th year and still 
going
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JPL’s MPFL Life Test Panel

JPL’s Europa MPFL Radiation Exposure Test Panel
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Thermal Control for Deep Space Small 
Spacecraft

• Objective:  Develop a thermal bus system (spanning both the bus and payload 
interfaces) that enables deep space exploration to 10 AU at low cost

• Needs
– Order of magnitude reduction in TCS power and 50% reduction in mass over current state-of-

the-art.
– Accommodates high heat fluxes up to 5 W/cm2; isothermalization of < 3 oC over a 1-m 

payload bench; temporal stability of < 0.05 oC/minute.
– Modular, scalable, configurable to enable integration and at reduced costs.
– High degree of control authority to reduce uncertainty and thermal testing costs.
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Performance 
Parameter

SOP 
Large Sat

SOP 
CubeSat

Proposed 
Small S/C

(~ 250 kg dry)
Cooling Load (Wt) 500 30-50 > 200

Thermal - Mass (Kg) 75 - 100 < 0.5 kg 10

Thermal - Power (We) 100 - 300 < 5 W 5

TRL 9 9 2-3
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Thermal Control for Deep Space Small Spacecraft—
Two-Phase Mechanically Pumped Fluid Loop 
Development
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Two-Phase Mechanically Pumped Fluid Loop 
Development
• Technology gaps identified

– Robust, versatile loop architecture needed for 
multiple evaporators and condensers

– Pumps
• 15 year life requirement
• Low NPSH pumps needed

– Evaporators
• Lightweight, large area
• Isothermal and tolerant of sub-cooled liquid

– Freezable radiators
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CubeSat Technology Gaps Identified

• The increasing power density of 
CubeStats and environmental load 
variation associated with interplanetary 
missions poses thermal control challenges

• Technology gaps are related to economical 
and miniaturized
– Deployable radiator systems
– Radiator turndown systems
– High conductance chassis
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Cielo Toolkit Development
• Cielo is a finite-element based, multidisciplinary, parallel toolkit 

that enables high-fidelity, fundamentally-integrated thermal, 
structural, and optical aberrations analysis of precision 
deployable systems

– "Nonderivative Technology” developed under 5-year R&TD 
Strategic Initiative by in-house team formerly from industry

– Distributed client server paradigm (MATLAB client, OpenMP-based 
parallel network server)

– Continued development and application in a variety of projects, 
from pre-Phase A demonstrators to rapid-turnaround challenges

• Cielo is enabling "In The Loop" model-driven operations 
development for MSL

– Operations currently rely on static “heater tables" for scenario 
planning

– Development of each heater table currently requires:
– Over a year of effort
– Hundreds of simulations
– Coordination of both internal and external (vendor) teams, each 

using separate subsystem models
– Cielo enables "Full-Up", common system modeling to: 
– Create heater tables “on demand”
– Increase daily, and overall, science return
– Improve power use efficiency and maximize safe battery draw-

down
– Enable future anomaly detection, investigation, and mission life 

extension
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