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Status of current and proposed projects

From the thermal subsystem perspective
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Planned Europa Clipper Mission

(Courtesy of Dr. Tony Paris, JPL Europa Thermal Lead / Dr. Brian Carroll, JPL Europa Thermal
Technology Lead)

The Europa Clipper mission would
place a spacecraft in orbit around
Jupiter in order to perform a detailed
investigation of the giant planet's moon
Europa -- a world that shows strong
evidence for an ocean of liquid water
beneath its icy crust and which could
host conditions favorable for life.

Constraints for the spacecraft design
include limited electrical power for
survival heating, long mission lifetime
(eight to twelve years), and tolerance
for high radiation environments.

An MPFL-based thermal control design
Is desirable for this application due to
the potential for efficient reclamation of
waste heat from electronics located
within a compact radiation shielded
“vault” for use as survival heat
throughout the spacecratt.

Radiation hardened pump controller
electronics and sensors are being
developed and tested for survivability
in the Jovian environment
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Mars 2020 Rover

« Key functions of M2020 Rover Heat Rejection System (RHRS):
— Removal of waste heat from rover during Cruise phase of mission
— Removal of waste heat from rover and MMRTG during hot part of the day
— Recovery of waste heat from MMRTG during the cold part of the day
— Thermally couple RAMP masses to create large effective thermal mass to reduce
temperature swings
 RHRS fluid tubes are embedded in RAMP to remove or add heat to keep
the science and engineering hardware at safe operating and survival
te m pe ratu res Bypass Valve Bypass Valve
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Mars 2020 Rover @
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Mars 2020 Rover
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Mars 2020 RHRS Tube Routing on RAMP
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Surface Water Ocean Topography |\/|ISSIOn
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WFIRST/AFTA Exo-Planet Finder @

Component |Power, W | Heater Capacity, W | Duty Cycle, %
AMS 23.7 117.4 20.2
. FMS 35.0 114.3 30.6
e Total Power: 1380W
SMST 36.1 117.7 30.7
OBA 1179W FOA Total 108.0 378.3 28.5

—_— . |
PM Baffle 44.2 300.0 14.7
— FOA: 201W, 64 control
. ’ FOA Struts 324 240.0 13.5
Zones OBA 1179.3 7520.0 15.7
Tele Total 1379.6 8513.3 16.2
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Orbiting Carbon Observatory-3

The thermal control system utilizes the JEM-
EF Active Thermal Control System (pumped
fluid loop)

Four thermoelectric coolers cool the Optical
Bench Assembly (OBA)

Two heat exchangers (HXs) remove heat
from four thermoelectric coolers (2 per HX)

A “Cold Panel” provides structure and heat
rejection for electronics Accumulator/Eilter

Accumulators compensate for decreases in Assembly
fluid density during transit

Fluid filters provide compliance with JEM-EF OBA TEC Heat
Exchangers

ATCS usage

Operational heaters provide thermal stability
for AFE, OBA, and PMA
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NASA-ISRO Synthetic Aperture Radar (NISAR)

* NISAR will measure surface motion over span of 12
days to study:

— Ice Sheet Collapse

— Earthquakes
- Volcanpes Deployable
— Landslides h Reflector

 Thermal Challenges

— Thermal environment: In order for the Instrument to
observe both North and South Poles the Instrument is
required to operate both sun facing and space facing

— Externally mounted boxes: Due to space limitations
and cable length requirements, the majority of the
Instrument electronics are mounted to the exterior of
the Instrument with radiators built into the high
dissipation boxes

— Deployable boom for the Radar: A segmented boom
that deploys in orbit; Thermal control and analysis
required for each of the five deployment phases

— Deployable reflector: ASTRO Northrop Grumman will
be supplying a deployable 12m aperture radar
mounted on the deployable boom Externally

 The NISAR DSI Thermal System utilizes traditional Mounted
thermal control materials and hardware for a largely Y Electronics

passive thermal design AP

— Radiative coatings/PRTs/Thermistors/MLI/Thermal
March 22, 2016 Pre-Decisional--For Planning and Discussion Purposes Only 12 jpl.nasa.gov
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Mars CubeSat Orbiter (MarCO)
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Mars CubeSat Orbiter (MarCO) @

 Transponder with high
power density

— Dedicated thermal PWB
Cu layers

— Custom Al thermal cover
for FPGA

— High conductance chassis

March 22, 2016

Radiator sized for S.S. -
10°C operation at 15 W

Capability for ~ 3 hours
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near Mars
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March 22, 2016

Curiosity Rover—Thermal Status

Total odometry
12,559 m

RTG output nominal
at ~95-99W...

Very slight decrease
over time in the
temperature of the
RTG, RIPA pressure
and RAMP
temperatures.

Thermal performance
has been excellent.
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Curiosity Rover—Thermal Status
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Curiosity Rover—Thermal Status

« Robotic Arm (RA) Shoulder Mounting Bracket and
Upper Arm Tube Temperatures

Robotic Arm {(RA) Shoulder Mounting Bracket and Upper Arm Tube
Sol0 14:59 to Sol-1278 02:13

W0 T T T T T T .

Temperature {(°C)
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Curiosity Rover—Thermal Status
* Rover Avionic Mounting Panel (RAMP) Temperatures

Rover Avionic Mounting Panel {(RAMP) Temperatures: Plot 3
Sol0 03:33 to Sol-1278 01:09
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Planetary Science Roadmap

Mars Current and potential future missions

2016 - 2020 2022 - 2026

Mars 2020 Science/ InSIGHT 2018 Mars Exploration Orbiter
Caching Rover

Geological Survey For Future Landings,
Curiosity Opportunity Mars Exploration Lander Resource Frospecting

g bl

-

MRO Odyssey Sample Return Permanent Robotic and Human Station
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Planetary Science Roadmap

Ocean Worlds Current and potential future missions

2016 - 2024 2024 - 2028

il

Enceladus Probe Subsurface Oceans

Europa Clipper

Liguid Ocean Linder Ica

-

e i

Europa Lander Concept

Titan Orbiter & Probe Europa Submarine

Cassini
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Planetary Science Roadmap
Formation & Evolution of the Solar System  currentand potential future missions

2016 - 2020 2020 - ...

Discovery Missions New Frontiers Missions Flagship Missions

el -4 ;
Comet Surface Trojan Tour &
VERITAS Sample Return Rendezvous

Uranus Orbiter

Dawn

Titan Saturn Probe TBD
. MNext Decadal

R

NECCam Venus In Situ Explorer Enceladus
.

Juno

Lunar South Pole —
Aitken Basin Sample Return
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Earth Science currentand potential future missions
2016 - 2020 Ongoing 2020

Sentinel 6 SWOT Water Cycle: MNatural Hazards:

MNext

Decadal Survey
2020

(Jason CS) How can we How can we better
improve water prepare for extreme

resource events (earthquakes,
management?  floods and hurricanes)?

Grace-2

NISAR

Imaging Spectrometer

Sea Level: Carbon Cycle:

Will sea level How are carbon
continue to rise at storage and
the current rate? biodiversity
changing?

OCO-3onlISS  ECOSTRESS on ISS

Scatterometer
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Astrophysics, Fundamental Physics & Technology @

Current and potential future missions

2016 - 2024 2024 2025

NEOCAM SPHERExX

Discover Explorer mission
|'»,f|i55iony P WFIRST Coronograph

5 I‘ - T

ST7 - LISA
Fathfinder

NEOWISE

Cold Atom Lab
on 1S5S

HabEx
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Pumped Fluid Loop Reliability

(Courtesy of Dr. Tony Paris, JPL Europa Thermal Lead / Dr. Brian Carroll, JPL Europa Thermal
Technology Lead / Dr. Gaj Birur) ) = m 7

e Long-term chemical
analyses on the
compatibility of the
working fluid,
Irradiated CFC-11,
with various wetted
materials _ | ,

» Pump life-testing: on  Npeenah %
its 10" year and still S n
going

JPLU's MPFL Life Test Panel
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Thermal Control for Deep Space Small

Spacecraft

]

* Objective: Develop a thermal bus system (spanning both the bus and payload

interfaces) that enables deep space exploration to 10 AU at low cost

* Needs

— Order of magnitude reduction in TCS power and 50% reduction in mass over current state-of-

the-art.

— Accommodates high heat fluxes up to 5 W/cm2; isothermalization of < 3 °C over a 1-m

payload bench; temporal stability of < 0.05 °C/minute.
— Modular, scalable, configurable to enable integration and at reduced costs.

— High degree of control authority to reduce uncertainty and thermal testing costs.

Proposed
Small S/C
(~ 250 kg dry)
Cooling Load (W) 500 30-50 > 200
Thermal - Mass (Kg) 75-100 <0.5kg 10
Thermal - Power (W,.) | 100 - 300 <5W 5
TRL 9 9 2-3
March 22, 2016 Pre-Decisional--For Planning and Discussion Purposes Only
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Thermal Control for Deep Space Small Spacecraft—
Two-Phase Mechanically Pumped Fluid Loop

Development

Variable Heat Rejection (Turndown)
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Two-Phase Mechanically Pumped Fluid Loop
Development

 Technology gaps identified

— Robust, versatile loop architecture needed for
multiple evaporators and condensers

— Pumps
e 15 year life requirement
e Low NPSH pumps needed

— Evaporators
 Lightweight, large area
 Isothermal and tolerant of sub-cooled liquid

— Freezable radiators

Pre-Decisional--For Planning and Discussion Purposes Only 29 jpl.nasa.gov



CubeSat Technology Gaps Identified @

* The Increasing power density of
CubeStats and environmental load
variation associated with interplanetary
missions poses thermal control challenges

 Technology gaps are related to economical
and miniaturized
— Deployable radiator systems
— Radiator turndown systems
— High conductance chassis

Pre-Decisional--For Planning and Discussion Purposes Only 30 jpl.nasa.gov



Cielo Toolkit Development

* Cielois a finite-element based, multidisciplinary, parallel toolkit
that enables high-fidelity, fundamentally-integrated thermal,
structural, and optical aberrations analysis of precision
deployable systems

— "Nonderivative Technology” developed under 5-year R&TD
Strategic Initiative by in-house team formerly from industry

— Distributed client server paradigm (MATLAB client, OpenMP-based
parallel network server)

— Continued development and application in a variety of projects,
from pre-Phase A demonstrators to rapid-turnaround challenges
* Cielo is enabling "In The Loop" model-driven operations
development for MSL

—  Operations currently rely on static “heater tables" for scenario
planning

—  Development of each heater table currently requires:
—  Over a year of effort
—  Hundreds of simulations

—  Coordination of both internal and external (vendor) teams, each
using separate subsystem models

—  Cielo enables "Full-Up", common system modeling to:
—  Create heater tables “on demand”
— Increase daily, and overall, science return

—  Improve power use efficiency and maximize safe battery draw-
down

—  Enable future anomaly detection, investigation, and mission life
extension
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