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Introduction

• Orbital-based maps over Mt. Sharp are key tools for 

– reconstructing time-ordered events in Mt. Sharp evolution

– contextualizing Curiosity’s exploration

• We examine newly derived, highest resolution orbital 

data and co-analysis of integrated datasets to 

generate detailed maps

• Incoporate observations from prior studies [Anderson & Bell, 

2010; Milliken, Grotzinger, & Thomson, 2010; Thomson et al., 2011; Fraeman et al., 

2013; Le Deit et al., 2013] while increasing spatial resolution to 

discriminate small scale features
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Coordinated Observations

Spatial correlations between albedo and 

thermal inertia highlight units
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Compositionally, texturally, 

thermophysically diverse
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Erosion resistant, layered strata

capped by hematite
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Phyllosilicate Unit
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Possible cemented 

bedforms [Milliken et al., 

2014] associated with 

Al/Fe phyllosilicate 

signature
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Layer with distinct 

spectral signature
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Layered Sulfate Unit
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Well layered strata 

associated with mono-

and poly-hydrated Mg-

sulfate signaures
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High TI and dark, 

texturally diverse
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High TI and bright, 

texture shaped by 

Aeolian processes



j p l . n a s a . g o v

Secondary Phases
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Secondary Phases

13
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Details on parameter mapping see Fraeman et al., LPSC 2015; Pan et al., et al this conference
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HiRISE with 

CRISM Overlays
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350 380

Thermal Inertia
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350 380

Thermal Inertia
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Bright 

fractures

“Brown” material
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Bright 

fractures

“Brown” materialSpectra
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Similar Hydrated Si-textures in the NE

• Spectral signature of hydroxylated silica associated 

with polygonal fractured light toned terrain near base 

of Murray formation 

• Outcrop large enough to resolve with FRT CRISM 

data

• Relationship between this outcrop and Murray 

formation unclear due to dune field cover

Seelos et al., GRL, 2014

2.2 µm band depth map, Seelos et al., 2014

Traverse 

(~12 km)

Western 

detection
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Secondary Phases
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Hematite
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Hematite

500 m
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HiRISE Color

50 m

Contact
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CRISM Overlay

50 m
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CRISM Hematite Detection
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Secondary Phases
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HiRISE Color

Layered Strata
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CRISM Overlay

Layered Strata
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Units versus Elevation



j p l . n a s a . g o v

Conclusions

• Many Mt. Sharp layers are +/-50m of  horizontal along NW corner of mound

• High thermal inertia units are younger and unconformable with primary 

horizontal layers, implies multiple episodes of Mt. Sharp burial and erosion

• TI variation linked with spectral (and textural) changes likely caused by 

variations in cementation, porosity, and sand cover

• Large spatial distribution of silica show silica enrichment was pervasive and 

widespread; geologic settings in orbital data consistent with rover 

hypotheses for multiple stages of silica enrichment (see also Frydenvang et 

al. Abstract #2349, Rampe et al., Abstract #2543)

• Hematite deposits stratigraphically controlled suggesting they are (1) 

primary depositional products or (2) formed through secondary diagenetic 

fluids controlled by stratigraphically residual matrix porosity or fracture 

porosity (see also Hurowitz et al., Abstract #1751)

• Hematite detection at multiple stratigraphic positions show redox interfaces 

were widespread through time and/or space during Mt. Sharp’s formation
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Extras

29
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High Thermal Inertia Unit Stimson Unit
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Hematite

500 m

Spectra

CRISM Hematite Detection
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High standing butte

HiRISE Color
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Hematite not in walls = thin layer?

CRISM Hematite Detection

CRISM Overlay
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Formation Scenarios
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HiRISE with 

CRISM Overlays
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Fig. from MSL Extended 

Mission Proposal, spectrum 

courtesy R. Milliken
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Detection #2: Average Murray Formation spectrum

• Small outcrops, mixing with other 

phases, + CRISM noise makes 

identification of individual Si-OH 

bearing outcrops within middle Murray 

formation a challenge
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Spectrum and CRISM processing courtesy R. Arvidson
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Detection #3: Oversampled CRISM Data Show Outcrop 

• Along-Track 

Oversampled CRISM 

Processed to 12 m/pixel 

processed using log 

maximum likelihood 

method allow for ID of 

isolated outcrops (Kreisch et 

al., 2015)

Possible future traverse

Hydrated Si outcrop
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