
MBSE-driven Visualization of Requirements Allocation
and Traceability

Maddalena Jackson
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-0319
mjackson@jpl.nasa.gov

Marcus Wilkerson
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr.
Pasadena, CA 91109

818-354-3487
Marcus.Wilkerson@jpl.nasa.gov

Abstract—In a Model Based Systems Engineering (MBSE) in-
fusion effort, there is a usually a concerted effort to define the
information architecture, ontologies, and patterns that drive
the construction and architecture of MBSE models, but less
attention is given to the logical follow-on of that effort: how
to practically leverage the resulting semantic richness of a well-
formed populated model to enable systems engineers to work
more effectively, as MBSE promises.

While ontologies and patterns are absolutely necessary, an
MBSE effort must also design and provide practical demonstra-
tion of value (through human-understandable representations
of model data that address stakeholder concerns) or it will not
succeed. This paper will discuss opportunities that exist for
visualization in making the richness of a well-formed model
accessible to stakeholders, specifically stakeholders who rely on
the model for their day-to-day work. This paper will discuss
the value added by MBSE-driven visualizations in the context
of a small case study of interactive visualizations created and
used on NASA’s proposed Europa Mission. The case study
visualizations were created for the purpose of understanding
and exploring targeted aspects of requirements flow, allocation,
and comparing the structure of that flow-down to a conceptual
project decomposition. The work presented in this paper is an
example of a product that leverages the richness and formalisms
of our knowledge representation while also responding to the
quality attributes SEs care about.

TABLE OF CONTENTS

1. INTRODUCTION . 1
2. VISUALIZATION AND SYSTEMS ENGINEERING 2
3. CASE STUDIES: INTRODUCTION . 3
4. CASE STUDY 1: CONCEPT HIERARCHY 4
5. CASE STUDY 2: CONSTRAINT ALLOCATION 7
6. CASE STUDY 3: HIERARCHY COMPARISON 9
7. CASE STUDY 4: REQUIREMENTS TRACEABILITY 10
8. TECHNOLOGIES . 11
9. CONCLUSIONS . 12
10. FINAL RECOMMENDATIONS . 13
APPENDIX . 14
ACKNOWLEDGMENTS . 17
REFERENCES . 17
BIOGRAPHY . 17

978-1-4673-7676-1/16/$31.00 c©2016 IEEE

1. INTRODUCTION
This paper discusses interactive visualizations of Systems
Engineering (SE) data developed and use in the context of
MBSE practiced on NASA’s proposed Europa Mission. We
argue that development of visualizations specifically, and
prioritization of facilitating SE interaction with model data
more generally, deserves more attention in MBSE infusion
efforts. We will use the example of visualizations developed
for the Europa project to motivate and ground our assertion.
In particular, we will discuss interactive visualizations cre-
ated to provide insight and visibility into the requirements
development process for the proposed Europa mission.

With the selection of the Europa Mission for concept and
technology development in June of 2015, the mission became
the first large-scale flagship project at the Jet Propulsion
Laboratory (JPL) to fully adopt an MBSE approach starting
at formulation, endorsed by the top levels of the project, and
intended to support all of our engineering activities or at least
drive them throughout the entire mission [1]. The Europa
project faces the challenge of all early adopters - being on the
cutting edge, building infrastructure as we use it, developing
strategies to do the work we have traditionally done using
new model-based techniques and methodologies. We are
not participating in a shadow effort, tech demo, or pilot; we
have crossed a tipping point and now face a rapid, ongoing
adaptation process.

Of interest here, out of the full scope of MBSE activities for
the Europa project [2], is that our requirements derivation
process is occurring in the model. Our requirements, con-
straints, rationale, verification plans, traceability, and links
to conceptual design are in the model and must now be
implemented. Our application of visualization is in the
domain of supporting the SE requirements derivation process
and reasoning about it through interactive visualizations.

SEs on the Europa project are provided multiple ways to in-
teract with the model depending on their level of comfort with
tools or personal preference: through direct use of our MBSE
tool, through a web interface presenting a predefined set of
editable views into the model data, or both. Consequently,
SEs at the project, flight system, and ground system level are
actually working with the system model as the Single Source
of Truth (SSoT) for the mission. This has already provided
many benefits, such as eliminating the need to manage and
coordinate the distribution and relationships between siloed
latest data. However, it has also revealed some gaps that are
not explicitly discussed in our MBSE visions. Specifically,
the underlying knowledge that there are good reasons why
SEs have traditionally chosen to work with spreadsheets and
viewgraphs, reasons that can cause problems for a large-scale

1

MBSE effort when those use cases are not accounted for in
our infrastructure.

The challenge

Our central argument is that successful MBSE infusion means
adoption by projects, and our efforts must respond equally
to the needs of practicing systems engineers and to the
abstract correctness of knowledge representation or they may
be abandoned.

Adopting MBSE requires the development of rules for cap-
turing necessary project and design data in a SSoT. Our
traditional document-based approach to information manage-
ment allows people to capture truth as they need it and is
most practical, which is why spreadsheets are so appealing.
This is effective for individuals, but presents problems if
we wish to leverage any advanced, machine-based reasoning
or algorithms to assist checks of completeness, correctness,
integrity, metrics, simulations, etc. In adopting MBSE, there
is a role/job that is usually performed by an ontologist or
architect, which is to make sure that the SSoT rules are
constructed so that the schema for knowledge representation
meets everyone’s needs. A test for adequacy of the result
would entail the capability to extract each person’s data
model from the system model.

The challenge is that for MBSE to be effective for SEs, it
must support the kinds of analysis, application of personal
experience, engineering judgment, improving and checking
the system by assessing by different slices, conversation,
negotiation, that was traditionally available through ad-hoc
spreadsheets and tools.

2. VISUALIZATION AND SYSTEMS
ENGINEERING

When we talk about visualizations in this paper, we mean
representations of data that viewers digest and analyze with
their eyes. Visualizations (as opposed to viewgraphs) speak
intuitively, but are driven by rich semantics. Visualizations,
at the most obvious and basic, are visual representations of
data to reinforce, assist, and expand human understanding
and perception. They allow us to see, explore, and under-
stand large amounts of information of various types at once.
Interactive visualizations capitalize on this rapid, intuitive,
pattern-based communication, and the insight obtained from
interacting with the data is now limited only by our curiosity
and creativity.

SE is an inherently creative discipline. It is also question-
ing, cross-cutting, innovative, skeptical, broad, detailed, and
exploratory. SEs have the job of managing, defining, and
designing a system, and problem solving happens through
trades, negotiation and compromise, all of which require
the correct balance of depth and breadth from the SE. A
core competency of Systems Engineering is the ability to
assess domain areas from an integrated perspective: from the
perspectives of many stakeholders with different interests and
concerns. SEs must be adept at making connections between
facts, systems, domains, behaviors, concerns, events in time,
cause and effect, processes, concepts, and realizations, be-
cause this is where system gaps are found and resolved. To do
this, systems engineers develop good mental models, which
help us understand, connect, remember, explain, and iterate
in solving the engineering problems we are faced with.

Visualizations for Systems Engineering

Visualization is effective for Systems Engineering because
it can both augment our mental models and can assist in
communicating the model and model-based insights to oth-
ers. Much of Systems Engineering is communication and
negotiation, so having clear and accessible ways for SEs to
exchange information and insight makes the discipline more
efficient. Interactive visualizations or interactive tools in
general thus lend themselves well to the inherent need of
SEs to reorganize, group, filter, and creatively manipulate the
information. Like a spreadsheet, interactive visualizations
provide the ability to manipulate the data to their liking,
but unlike a spreadsheet, that data conforms to ontological
rules, so the SE is inherently asking questions within the
framework.

To best target visualization for SE, it is useful to look at
how SEs interact with data in the current (document-based)
paradigm. This is a valuable exercise because our record of
successful and increasingly complex missions indicates that
what we are doing now works and is effective. Our goal,
however, is to further improve the effectiveness of SE, so
transition to MBSE must least support existing capabilities
if it aims to then improve upon them.

In traditional Systems Engineering, SEs build their own
ways to manage and manipulate data to answer questions,
support meetings, reviews, exploration, and learning, often
through use of spreadsheets, slide decks, or diagrams. In
spreadsheets, we use categorization and tagging so that we
can do filtering and organizing. SEs also write emails,
ask questions, draw on whiteboards, etc. This is a very
organic and individualized tool ecosystem. Visualizations,
when carefully crafted, provide a very useful balance between
allowing the SE to have creative and exploratory access to the
data while maintaining the robust and rigorous structure that
encodes meaning.

Figure 1. Frameworks provide the rules for populating
and analyzing system models.

Model-driven Visualizations

The system model is a repository containing objects, proper-
ties, values, and relationships to other objects. Our ontologies
set out definitions of different objects and relationships and
the rules for what is allowed to connect to what. We populate
our models through an act of translation and transformation:
mental SE models (and traditional artifacts) become objects
and relationships that obey the rules of the frameworks. This
process requires discussion, explanation, and negotiation be-

2

tween experienced SEs, modelers, architects, and ontologists
until the transformation becomes familiar to all. From a
populated model we can extract subsets of the data, projecting
views from the model to generate key products and analyses.

At JPL, we have created a very strong core of infrastructure
for configuring and generating these view projections and
with them have made significant progress in breaking down
the barriers between MBSE and traditional documents: with
DocGen, we can produce static model-based artifacts, and
with View Editor, we have a web-based read/write capability
for model data [3][4][5]. Neither of these capabilities, how-
ever, yet addresses the SE need to dynamically explore and
manipulate model data. This is where our visualizations for
the Europa project come in.

3. CASE STUDIES: INTRODUCTION
We will describe four interactive visualizations that we cre-
ated to address specific concerns in the design and require-
ments derivation process for the Europa project:

Table 1. Case Study Description

Case Study Description
CS1: Concept Hi-
erarchy

Functional/logical decomposition of
technical areas on Europa

CS2: Constraint
Allocation

Allocation of constraints between
technical areas

CS3: Hierarchy
Comparison

Comparison of an asserted decom-
position to an inferred decomposi-
tion

CS4: Traceability Full requirements traceability

To explain the value our visualizations added to the mission,
we need to provide a brief overview of the requirements
derivation process for the proposed Europa mission. Design
activities for the project, including requirements derivation,
are done through formal methodology that, unfortunately,
cannot be given full justice here [6]. The salient feature of
that methodology for the purpose of this paper is that we
maintain a strict separation between the needs of our mission
and the actual design. The conceptual needs drive the design,
but stay separate, with formal binding requirements originat-
ing from the conceptual needs and acting as an interface to the
real design. Our requirements derivation process is the de-
velopment and elaboration of those conceptual needs and the
mapping of those conceptual needs to formal requirements,
and is notionally depicted in Figure 2.

Early in the mission, a group of architects and experienced
engineers identified functional domain areas that, taken to-
gether, form the complete set of perspectives and technical
areas of concern from which requirements, architectural de-
cisions, and design can logically originate. These functional
domain areas are called “Concepts” and a responsible en-
gineer and modeler are assigned to develop and model the
content of each one.

The concepts relate to each other through their place in
a hierarchy (an example of which is shown in Figure 3)
that was informed by functional and logical decomposition
and engineering judgment based on knowledge and tradition
of previous missions. The purpose of the hierarchy is to
structure and provide scope for the conceptual elaboration

Figure 2. The role of requirements in separating concept
and realized design.

Figure 3. Notional concept hierarchy.

and refinement of high-level concerns and constraints, such
as mission success criteria, the strategy for conducting obser-
vations of Europa, and operability, into lower level concerns
such as temperature control of the flight system, mass alloca-
tion, and ground system infrastructure.

Figure 4. Parent and child concepts.

The job of the responsible engineer (“concept lead”) is
to explain, within the scope of their concept, the Europa

3

Table 2. Stakeholder concerns

Stakeholder Questions Solution
Concept Lead • Where is my concept situated in the hierarchy?

• Who are my parent and child views?
• What functional areas influence me?
• What functional areas do I influence?

• Concept ping
• Concept trace, highlight, and filter

Systems Engineer • What concepts influence each other?
• What concepts have biggest impacts?
• What concepts require a lot/a little work?
• Does this hierarchy look complete?

• Highlight and filter
• Bar sizes and line aggregation
• Exploration and diagram relayout

Architect, Manager • What is the state of concept development?
• What areas need attention?
• How is the status trending?

• Colorization and table

Project’s approach to addressing the concerns, needs, and
constraints on the mission specifically related to the technical
domain of their concept. This is done through structured
narrative that explains our response to incoming constraints
and provides justification and rationale for the derivation
of new constraints to be allocated to lower level concepts.
Constraints are assertions made with respect to the conceptual
needs that must be true of the ultimate design. This process of
elaboration, derivation, and allocation is recursive throughout
the hierarchy of concepts so that the traceability from detailed
and low level decisions back to high level success criteria and
mission goals is clear and navigable.

The concept lead works with their assigned modeler to cap-
ture the conceptual design, constraints, elements, and rela-
tionships in the system model. This rich engineering activity
provides the context and justification for our requirements:
the constraints identified in the concepts are assessed by the
responsible engineers and requirements team, and projected
into Requirements when there is a need to contractually bind
a supplier to deliver an item that satisfies these requirements.

Flowdown and Traceability

Of specific interest to us in this paper is the aforementioned
ability conferred upon a “parent” concept to levy constraints
upon concepts directly below it in the hierarchy (“child”
concepts), with the expectation that the child concept will
describe our approach to satisfying them. Because this
recursive elaboration drives the requirements derivation, we
are concerned with understanding first the hierarchy, then the
particular constraints that are allocated between concepts, and
then the full traceability story of those constraints. It is this
traceability, representing the result of our system functional
decomposition that we are interested in visualizing, because
we are now presented with a new, MBSE-based requirements
derivation process, with new tools, and a rich dataset that is
difficult to mentally track.

Visualization Overview

The visualizations discussed here follow the common format
of an interactive web-based tool that takes data in the form
of a graph of nodes and edges and renders the graph in a
visually coherent way for manipulation and exploration by
users. Our datasets and visualizations are large and intended
to be explored in a working environment; consequently, we
have included full-page versions of the smaller figures in the

Appendix.

All of the visualizations discussed here are Sankey diagrams.
Sankey diagrams are a form of flow diagram showing nodes
and edges where the width of edges is proportional to amount
of items flowing between the connected nodes. Our Sankey
diagrams render directed acyclic graphs of nodes and edges.
This is appropriate for the kind of data we are dealing with
in concept hierarchies and requirements flow and traceability,
where the data is acyclic, hierarchical, and directed, but not a
tree like most common plotting tools expect.

The first case study, the interactive concept hierarchy ex-
plorer, was the first visualization developed and was the basis
for the other visualizations discussed in this paper. The
framework developed for the concept hierarchy visualization
is generic and was easily customized and extended to our
other examples.

4. CASE STUDY 1: CONCEPT HIERARCHY
The first visualization we will discuss is a straightforward
tool that lets us investigate and comprehend the full concept
hierarchy in the Europa project. The usefulness of such
a visualization is apparent when we become aware of the
size of the dataset: there are approximately 150 concepts in
the hierarchy. This immediately gives rise to some relevant
questions, a few of which are categorized by stakeholder and
presented in Table 2.

Figure 5. An original concept hierarchy visualization:
“The Scroll.”

Our Starting Point

The first visualization of the concept hierarchy was a simple
static diagram of the concept hierarchy drawn in our MBSE
tool and shown in Figure 5.

Problems with this are immediately obvious in that the reader
of this paper cannot actually see anything other than a graph

4

Figure 6. Our solution: interactive Europa Project concept hierarchy.

structure; the dataset is too large and spread out.

In practical use, this diagram was printed on a roughly 4ft
long sheet of paper and unrolled on a conference table like
a scroll. To use this diagram, someone had to a) know who
had the print copy and borrow it then b) manually locate the
concept of interest and finally c) pan and zoom around either
with their finger to learn anything about related concepts.
People who knew where to find the diagram in our MBSE tool
faced the same issues, except on their monitor. In addition to
these user interface issues, there were back-end problems: a)
someone had to manually manage the layout of this diagram,
b) someone had to ensure that the content was complete, and
c) someone had to make sure that the printed-out “scroll” was
the latest.

This was indeed a “visualization” of model data but not a
particularly convenient one. It was frustrating and tedious to
learn from, it could not be filtered or easily rearranged, and
very little could be observed at a glance.

Our Approach: Interactive Graph Visualizations

We addressed the problems presented by static, difficult to
navigate scrolls by creating a web-based interactive visual-
ization of the concept hierarchy graph that helps address the
concerns of different stakeholders.

Figure 7. Zoomed view of the concept hierarchy.

In our visualization, shown in Figure 7, each concept is
represented as a node connected to other nodes through grey
lines. The diagram is read left-to-right (parent concepts are
at left, children at right). The number of connected parents
and children, whichever is greater, determines the height of
each concept’s node. Figure 7 is a small selection of the
entire concept hierarchy (the entire hierarchy is extremely
large, as seen in Figure 6). The lines on the left side of
the “Flight System” node represent links incoming links from
parent concepts, and the outgoing lines on the right side link
to concepts for which FS is a parent.

Figure 8. Medium-zoom view of the concept hierarchy.

The zoomed-out Figure 8 shows that the Flight System
concept has many children, including Payload, Mechanical,
and Radiation Monitoring. We can easily see at a glance
what domain and concern areas are expected to influence our
conceptual approach to designing a Flight System, and we
can see what lower level concepts will be driven and bound by
the decisions made in the Flight System concept. The entire
concept hierarchy is shown in Figure 6.

From these figures the reader can see that the hierarchical
graph is more legible than the inital visualization, but still
quite complex. To address this, we have added some usability
features to assist engineers in exploring and answering their
questions. The layout of the visualization tool is shown in
Figure 10. In addition to interacting with the visualization di-
rectly (clicking, dragging, mouse-overs, etc.), users can ping,
filter, and modify some layout parameters through a control
panel located directly beneath the visualization. Additional
element information is displayed in a dynamic table below
the display controls.

5

Figure 9. The concept hierarchy graph has been filtered to show only parents and children related (directly and
transitively) to the Trajectory Approach concept.

Figure 10. The visualization and interaction interface as
presented to the user.

Highlighting

When the cursor hovers over a node, the incoming and
outgoing links are highlighted in red so that the user can
clearly see which nodes are directly connected to the one of
interest. This is depicted in Figure 11.

Figure 11. Highlighting: when the cursor is moved over
a concept, the incoming and outgoing connections turn

red.

Ping

To find specific concepts among the large number present in
the system, we created a “ping” feature. The user selects the
concept of interest from a dropdown list of all concepts (in

the locate, filter, and layout options immediately below the
diagram) and when the ping button is clicked, a location ping
(red pulsating circle) appears at the location of the concept so
that it can be quickly identified.

Node rearrangement and dragging

The visualization also supports the vertical rearrangement of
nodes so that the user can lay out the diagram to their liking
beyond the initial constraints of our layout algorithm. This
aides comprehension by allowing users to reorganize the data
according to their concerns. Dragging causes the links to
other concepts to dynamically move (they are stretchy), so
by grabbing a concept and moving it around, they can get an
intuitive sense of the magnitude of its relationship to other
concepts.

Filtering

The visualization also provides a mechanism to display only
certain portions of the hierarchy. Currently this is limited to
recursive display of parents and children based on selecting a
concept of interest and choosing the depth of related nodes to
show. In Figure 9, we selected the concept Trajectory Design
and showed all of its parents and children.

Figure 12. A filtered selection of hierarchy data showing
only direct parents and children of the Trajectory

Approach concept.

In Figure 12 we show the same concept’s parents and children
to a depth of one (i.e., direct parents and direct children).

6

Figure 13. Concept-related data provided to users after clicking on a concept in the interactive diagram.

Table

The last feature we will discuss is the table we provide below
the locate, filter, and layout area. This table populates and
updates its displayed data based on which nodes or edges are
clicked in the diagram. The purpose of the table is to give
users more information about the concept of interest and its
related parents/children and is shown in Figure 13.

In the example above, we clicked on the Trajectory Design
concept. The “role” column shows the concept in relation to
the concept clicked that was selected. The concept name, the
concept author (responsible engineer), a link to the model-
generated narrative of the concept, and the maturity of the
concept are also displayed. The maturity is also shown on the
diagram via the color of the node [7].

About the Visualization

While the Concept Hierarchy visualization does not make
use of the width-proportional edge capability found in most
Sankey diagrams (each edge here has a weight of one), it
does convey the magnitude of a concept’s connections with
its neighbors via the height of the concept node. We will see
use of the proportional-width edges in the next case study.

Addressing SE Concerns

This visualization allows us to intuitively comprehend the
nuances in how the concepts relate to each other. We can,
by our visual inference, understand that a concept with many
incoming connections and only a few outgoing connections is
a concept that responds to the needs of a domain from many
sources, and will probably have significant SE work to do in
reconciling the different needs (which may overlap) and then
crafting a reconciled approach.

When a concept has many children, but few parents, we can
infer the opposite: that it is motivated by a small number of
key functional areas that require the collaboration and union
of many disciplines to ensure that the need is met.

When a concept has a large number of incoming and outgoing
concepts, we can infer that this concept will be a central
player, probably requiring extra systems engineering atten-
tion to make sure that the diverse source needs and large
number of responding disciplines are coordinated effectively.

By looking at not just the direct parents and children but their
relatives as well, we can begin to understand, analyze, and
track the paths of influence that drive our system.

SE use on the proposed Europa Mission

This visualization supports our ongoing work as Concept
Leads, Systems Engineers, and Managers. It is a living view
of the latest data: it is fed by a projection of model data and
ultimately can/will pull the data on page load. The definition

of the hierarchy is authoritatively contained within our system
model, and that data is automatically extracted and fed to this
particular hierarchy explorer tool.

The images shown in this paper are exactly what SEs see
in their day-to-day work on the Europa project and Europa
SEs currently use it in a variety of contexts. On our project
website (which is model-driven and where most SEs capture
their work in this phase of the mission), this visualization may
be accessed quickly from the top-level page, making it easy
for SEs to find and refer to it.

This visualization added value by providing concept leads,
systems engineers, managers with system context and state
information that had been missing. The visualization is
often shown in meetings to ground discussion; it is used
by managers to check that the concept development work,
the status of which is characterized at a high level by the
maturity, is continuing as expected; the filtered views are
commonly saved as snapshots and included in project and
concept reviews to quickly orient the audience as to where
the concept is in the larger conceptual and design effort.

It was difficult and tiring to internalize and draw conclusions
from such a large network of interrelated information by
inspecting the original static diagram, but with the interactive
view, the information is more compact. The interactivity,
highlighting, filtering, and table helps SEs modify the initial
data presentation quickly to whatever communicates most
effectively to that individual. This has resulted in increased
data accessibility for a larger set of our SEs, managers, and
other stakeholders.

5. CASE STUDY 2: CONSTRAINT
ALLOCATION

The concept hierarchy shows us what is intended in terms of
the influence and allocation of issues and constraints between
concepts. The next visualization in our case study goes
further, showing us not what we intended to do but what we
did do: what constraints are actually allocated from parent to
child. The full allocation graph is shown in Figure 14.

We now leverage the width-proportional edges of the Sankey
diagram to indicate the number of constraints being allocated
from parent to child (again left to right). Besides the edge
width, this visualization has all of the locating, filtering, and
layout options available in the last visualization (so they will
not be introduced again).

Ideally, the flow of constraints should obey the channels
asserted by the concept hierarchy. However, our concept
and requirements development process allows SEs to levy
constraints from concept to concept as needed in order to con-

7

Figure 14. Case Study 2: Constraint allocation (left to right) between concepts. The number of constraints allocated
from parent to child is indicated by the width of the line between the concepts.

tinue efficient forward progress. A process of reconciliation
and resolution occurs later (and is supported by the third of
our visualizations). When one queries the actual constraint
allocations from concept to concept out of the model and
visualize them in our second tool, we see the allocation
network shown in Figure 14.

Figure 15. Filtered graph showing allocations to and
from the Operability concept.

Figure 15 shows a closer look at a one concept (Operability)
and in this visualization we can see the width-proportional
lines. This diagram, at the time of writing, is not at the
desired end state, but it is an expected step in conceptual and
requirements development. Over time, and as the maturity of
each concept, constraint, and allocation improves, we expect
the structure of the allocation visualization to evolve towards
that of the concept hierarchy.

Analysis

Using this visualization, we can explore and comprehend
what is really happening in our engineering development.
Concept leads can use this tool to examine the set of con-
straints that they will have to address in their concept and
who levied them (in the previous visualization, they could
only see who they should expect to receive constraints from).
They can also see the maturity (development state) of each

constraint, in addition to the state of the allocation (accepted,
rejected, awaiting review, etc.). This is presented through
the table, which now displays constraint-specific information
(rather than concept information):

Figure 16. Allocation information associated with the
Operability concept. This helps users understand the

particular allocations beyond the network and
magnitude presented in the interactive diagram.

With this view, Systems Engineers can find the concepts that
they oversee or those that affect their domain and understand
the allocation of engineering needs to be addressed. They
can understand quickly and intuitively the flow of issues to
be addressed; what areas need work; what areas are getting
traction. This gets at the cross-cutting and exploratory nature
of the SE job. For SEs and managers who want details of
maturity, these are available, and the architect who wants to
know how well the actual constraint flow conforms to the
asserted hierarchy can begin to assess that.

By looking the number of constraints a concept must ad-
dress, constraints it derives, and the proportion of derived
constraints allocated to each of its child concepts, SEs can
understand at a glance the magnitude of work required in each
concept and assess the sensitivity of the entire system to that
concept. This allows concept leads to quickly understand how
their own state of work fits into the Project’s current state of
development.

These two examples begin to demonstrate the power of using
model-driven visualizations to assist our SE process. We can
begin to realistically envision tools that answer even more
questions. We will, for example, want to understand the full
traceability of a single requirement. We can imagine clearly

8

Figure 17. The hierarchy comparison visualization.

understanding more impacts of changes to constraints and re-
quirements from the perspective of SEs: in the simplest case,
who else is affected? Has anything I care about changed?
Am I fully addressing my incoming requirements? How have
these constraints and requirements changed over time? How
sensitive are we to our driving requirements? The next two
case studies will demonstrate our ability to answer these kinds
of questions.

6. CASE STUDY 3: HIERARCHY COMPARISON
We noted in the previous example that the actual flow of
constraints between concepts does not particularly match the
asserted conceptual hierarchy we had expected it to obey. But
how do we understand these differences? Our answer is a vi-
sualization that overlays the expected and actual hierarchies.
The full comparison visualization is shown in Figure 17.

To visualize the comparison, we query from our system
model a graph structure that contains both the expected and
actual relationships. We start with the expected (“asserted”)
hierarchy, and add to that graph edges representing actual
constraint allocations. A concept that allocates many con-
straints to a child concept is assigned a single edge of width 1
(because we are interested in the general flow, not specific
constraints). Where we find actual (“inferred”) constraint
allocation for which there is an edge in the asserted hierarchy,
we mark that edge as “asserted and inferred.” If we find no
actual allocations for an edge in the concept hierarchy, it is
“asserted only.” If we find allocations but no matching edge in
the concept hierarchy, it is “inferred only.” These distinctions
are represented as different colored links between concepts,
as described in Figure 18.

Figure 18. Comparison visualizations use color to
differentiate between the kinds of parent-child

relationships in the merged hierarchy.

Inferred only (light teal) means that we have flowed con-
straints outside the rules. Asserted only (royal blue) means
we have an asserted relationship but are not flowing any
constraints. Ideally, we would only see asserted and inferred
allocations (black lines).

This diagram gives us a way to directly assess correctness
and completeness: we presume that our concept hierarchy is
correct, so every case where we find a violation or no uses of
edges that we expected to need is a case for further analysis.

To use this diagram more practically, we can look either at
the entire dataset (unwieldy) or filter it for specific areas:

Figure 19. From this filtered view we can assess how well
the constraint allocations to Operability (Figure 15)

match up to the concept hierarchy of CS1.

As seen above, the Operability concept was only supposed
to receive constraints from and allocate constraints to three
other concepts. From a quick inspection of this diagram, we
can see that Operability believes that it requires the ability
to levy constraints upon a large number of child concepts
in order to fully address the issues it was given, and these
child concepts were not anticipated in the construction of the
concept hierarchy.

This discrepancy is actually extremely useful. It means that
we have work to do in either making a case to add the
children (thus legitimizing the flows we needed in our actual
development process), or we must scrutinize the allocations
we have made from Operability to these other concepts to see
if they are in fact incorrect.

Figure 20. The Flight System concept shows every
permutation of the comparison.

The Flight System concept’s links to its parents and children

9

Figure 21. We construct a traceability graph showing the derivation story for a constraint.

(seen in Figure 20) show all three cases: there are links where
we expected to get constraints but have not; cases where we
get constraints from sources we did not expect; and cases
where we both expect and have made allocations.

The analysis of completeness and correctness that this view
supports is an analysis we have not been able to do easily
in the past. Now we can do them simply by spending a few
seconds looking at a diagram. Further, given the filtering and
scoping capabilities of the visualization, we can perform this
analysis using the entire concept hierarchy and all allocations,
or we can dynamically render scoped views of concepts,
parents, and children in the work area of each concept.

7. CASE STUDY 4: REQUIREMENTS
TRACEABILITY

The last case study presented in this paper is visualizing
the traceability of individual constraints through the concept
hierarchy. The piece that none of our visualizations have
previously showed is the mapping of a concept’s derived
constraints to its inbound constraints. This mapping is re-
quired in order to follow an individual constraint to its parent
constraints, and their parents, or to children and their children
going the opposite direction.

Figure 22. We use the model to construct the traceability
story. The constraint is allocated to the concept in step 1,

elaboration and derivation occurs in step 2, and from
there we can infer traceability links between constraints.

Our concept hierarchy specifies expected connectivity, our

allocation flow shows what concepts are responsible for ad-
dressing constraints, and our comparison visualization shows
us how well our allocations match up to what we expect.
None of these, however, show us the state of our derivation
process at an individual constraint level and allow us to
assess whether the constraint derivation process, and thus the
requirement derivation process, have worked.

Recall that a major result of the concept and requirement
development process is inbound constraints richly elaborated
into a set of derived constraints that address them. This
elaboration, shown in Figure 22, is done both in a rich
narrative and in an underlying set of model relationships that
form a graph between the incoming and outgoing constraints
for each concept.

Traceability from child constraint to parent constraint is
inferred by looking at the model links between allocation
(which is to an intermediate object in the concept) and
elaboration (which is from a constraint to that intermediate
object). This results in complex network of traceability that
is extremely difficult to understand manually. Our visualiza-
tion translates the modeled traceability network into a graph
structure and renders it for inspection by the user.

The constraint traceability network is quite large, so the
reader will only get a sense of the scale of the graph from
seeing the full network shown in Figure 23. While this com-
plete view is much more comprehensible on a large monitor,
visualizing the entire data set is really only useful to get a
sense of the work completed and work remaining to be done.
As this diagram indicates, there is significant work to go in
mapping derived constraints to alocated constraints: we can
see that there are many fragments of traceability. A traceabil-
ity fragment is a case where one concept has completed the
mapping of its derived constraints to its inbound constraints,
but the parent and child concepts have not completed their
mapping work. From this large diagram we can also get a
sense of whether parent constraints are of higher maturity
than child, and if not, identify individuals or groups to work
the problem. This is extremely useful for the requirement
SEs.

The other intended use of the visualization is to examine the
traceability graph of one or a small number of constraints
at a time. We have selected one constraint and show its
traceability in Figure 21.

The individual constraint is furthest right with the parent con-
straints it responds to (and then their parents, etc.) propagat-
ing leftwards. The traceability view presented here masks the

10

Figure 23. Showing the traceability of all constraints at once gives a high level impression of the traceability flow,
maturity, and state of work.

separate allocation and elaboration steps into an abstracted,
point-to-point edge between constraints. The “why” column
of the table shows textual explanation and justification for the
traceability obtained from the model. Figure 24 shows the
table that explains the constraint attributes and relations to its
neighbors.

Figure 24. Table data provided to the user when an
individual requirement is selected from the traceability

visualization.

Because our requirements are derived and projected from
our constraints and concepts, the traceability network shown
in these visualizations constitutes relationships between our
requirements, allowing us to easily construct the traceability
graph of our formal requirements based on the result of our
derivation process.

Traditionally, traceability links are extremely superficial and
lack semantic relevance. We do not require explicit ratio-
nale for why or how a requirement derives from another (a
requirement usually has a rationale, but it is not a rationale
for the traceability). We also do not traditionally capture the
particulars of how a requirement actually addresses (in whole
or part) the parent. Our modeling approach for the Europa
project provides that richness in the pattern we use for linking
our inbound and outbound constraints.

8. TECHNOLOGIES
The visualizations we have presented in this paper rely on
a combination of commercial, homegrown, and open-source
technologies. We use a commercial MBSE tool and our JPL-
developed web front-end, View Editor. The visualizations
are currently designed as a standalone web application that
ingests datasets generated from the model and displays the
visualizations discussed previously. An abstracted represen-
tation of our software stack is shown in Figure 25.

The visualization app relies on the open-source JavaScript
library d3.js, and all visualizations use a significantly mod-

11

Figure 25. The end-to-end model to viewer toolchain.

ified version of the Sankey plugin for d3 (sankey.js) [8][9].
The customizations modify the sankey.js layout algorithm
and data structure to add support for the kind of hierarchical
layouts we want to show, add additional layout input param-
eters, and modify the data structures.

We currently interchange data between the system model and
the visualization app via data generators in our MBSE tool
that generate JSON data files containing all or a subset of the
relevant data, somewhat preprocessed into a graph structure.
The data is provided either as a link to a served file, a manual
local upload, or a JSON string on the URL.

Figure 26. The visualization dashboard is provided by
the standalone visualization application and rendered
inside our web front end for easy access by viewers.

Other URL parameters are defined to provide initial filtering
and sizing of the visualization for convenient inclusion into
other technologies, such as View Editor or other web pages.
This simple inclusion into other web applications is how we
primarily use this capability on the Europa project.

9. CONCLUSIONS
The visualizations presented here, through their application
to the MBSE effort of the proposed Europa Mission, eased
some of the frustration and confusion that is an expected side
effect of adapting to a new paradigm. These visualizations
were found to make the SE-relevant content of the system
model much more accessible to SEs, managers, and other
stakeholders. The application of visualization was a demon-
stration of a new capability that is enabled by MBSE and is

difficult to do traditionally because our traditional paradigm
lacks the single source of truth of MBSE and the formal data
structures contained therein against which we can write.

The case studies discussed here demonstrate the efficacy of
visualizations in facilitating access to and comprehension,
analysis, and exploration of large data sets by Systems En-
gineers on the Europa project. While these visualizations
always responded to driving use cases from SEs, we found
that they always addressed many more communication and
system visibility issues than we initially expected.

Skills sets and tensions in SE and MBSE

Our ultimate goal in doing MBSE-driven visualization is to
facilitate interaction with model data for SEs in an organized
effective needs-based way so that they can make better-
informed decisions more quickly. While visualizations are
certainly interesting, this work, in the context of large-scale
MBSE efforts and increasing MBSE adoption, suggests some
areas we should revisit and focus on in future MBSE efforts.
Specifically, the skill set of SEs on MBSE projects and the
focus we devote to planning our MBSE efforts, and the role
of different technologies.

This work was done at a very low level of effort by one
developer over nearly a year, resulting in an estimate of less
than three weeks in total. By reusing code, standing up new
visualizations of hierarchical acyclic directed graphs now
requires only a few hours of developer time, and new features
are captured and made available in libraries or patterns. This
means that the ratio of project value to time invested is
extremely high.

A set of favorable circumstances created an environment
where these visualizations could easily happen, and a brief
discussion of the skills and circumstances is useful in making
recommendations for facilitating similar work.

These visualizations were created when a Systems Engineer
on the Flight System Requirements Team happened to have
both the need for such visualizations firsthand and the skill set
required to prototype the visualizations to satisfy that need.
The was technically possible due to the colocation in one
person of MBSE tool knowledge required write data gener-
ators from the MBSE tool, background in writing d3 web

12

applications, and also being customer for the tool. The work
was practically possible due to a project structure and culture
that allows and encouraged development of potentially useful
applications.

This lead to a rapid and centralized development process that
resulted in prototype visualizations, followed by demonstra-
tions to other SEs, and ultimately in visualizations adopted by
the mission that now are heavily used and respond to feature
requests from the rest of the team. The volume of feature
requests coming in indicates desire for more work of this
kind.

This, however, is not a sustainable way to apply visualization
to MBSE, because not every SE, developer, or modeler
should be expected to have that particular skill set, nor do
we explicitly staff our SE teams with those skills. The point
we wish to emphasize here is that it was the intersection of
software development experience, MBSE experience, and SE
on the ground knowledge that was needed for this work to
happen, which suggests it is a worthwhile skill set to consider
in building future MBSE teams.

This consideration of skill sets brings us to an area of tension
that should be addressed directly: the skill sets that we find
useful in MBSE projects:

• Should SEs be modelers?
• Should SEs be software developers?
• If not, how can we do compose teams that do have those
skill sets? Can we make use of cross-training? Will that lower
costs?

We do not propose to answer these questions here, or imply
that we have answers; instead, we suggest that projects and
organizations wishing to employ MBSE confront this openly
and discuss it directly. Looking at the “ingredients” that were
present for this work, we synthesize three roles that were at
play:

• Systems Engineer (with SE domain knowledge and need)
• Product designer/developer (with design and software ex-
perience)
• Facilitator/requirements engineer (bridge between SE and
developer, analyzes needs vs capabilities, etc.)

We have many people in at least one of these roles on our
projects; we do not need them to manifest in one person.
When the SE does not have the time, interest, or specific skill
set to make visualizations, thinking about roles required to
do this development effectively helps us select the people we
should put together to make effective visualization happen.

A second area into which this work provides insight is that
of planning for MBSE efforts. As previously mentioned,
this work initially came about as a result of an SE with a
certain skill set trying to solve their own problems in this new
paradigm. It was not a planned effort as part of an MBSE
infusion strategy or vision.

It is the impression of the authors that much of the planning
effort goes to knowledge representation and capture when
attempting to apply MBSE. While unarguably valuable, we
assert that more effort must be devoted to studying the SE
process employed by practicing SEs, developing use cases
for how SEs wish to interact with the model data, collecting

SE questions and desired capabilities and mapping them
to views and visualizations that can be constructed to help
SEs work in an MBSE project - all before the project even
starts. The positive responses of SEs and MBSE practitioners
to the work presented here and the degree to which these
simple tools have been adopted and infused into the rest
of the mission and continual requests for new features and
additional visualizations supports our assertion.

If we want to approach MBSE-driven visualizations in an
institutional top-down way, we must study our current SE
practices to get use cases and requirements. At the same
time, MBSE-driven visualizations are not mature and the area
has not been explored sufficiently to begin any kind of top-
down standardization or technology selection that would limit
research and development in this area.

10. FINAL RECOMMENDATIONS
The core challenge facing MBSE infusion efforts is this: if
we as Systems Engineers cannot explore, interact with, cate-
gorize, filter, annotate, and generally be creative with the data
in the model, we cannot do our jobs. Our vision for pushing
the boundaries of the SE practice and advancing the state of
the art with MBSE is irrelevant if engineers cannot do the
SE work we are tasked with, and in that situation the future
may not include MBSE. Inability to communicate model data
intuitively, effectively, creatively to stakeholders in a way that
gives them confidence in and ownership of the system can
make MBSE infusion difficult or even unsuccessful.

From this exercise in developing MBSE-driven visualizations
for requirements development for the Europa project, we
conclude that MBSE-driven interactive visualizations are one
way to facilitate interaction with relevant model data by SEs,
and should continue to be formally explored as part of MBSE
infusion efforts. We have formed some recommendations for
parties wishing to pursue similar efforts.

Catalog SE questions

Begin soliciting and cataloging the nuanced questions and
concerns that Systems Engineers ask now, but do not always
verbalize.

Study visualization strategically

Invest in a strategic study of MBSE-driven visualization.
Identify explicit goals for the study of SE needs, processes,
and views, and identify explicit goals and requirements for
visualization infrastructure development, including best prac-
tices and standards for software development.

Find the right skill sets

Consider the three roles discussed earlier and make sure that
they are represented in teams assigned to creating visualiza-
tions.

Collaborate with software and visualization domains

Foster collaboration between line organizations that provide
skilled people in areas of visualization, SE, software develop-
ment, and architecture.

Encourage communication of results

Support regular visualization showcases and discussion
groups to motivate practitioners to generate new ideas, share
tools and skills, and start creating a community of practice.

13

APPENDIX
This appendix contains full-width renderings of the smaller figures presented earlier in this paper.

Figure 27. (Full-sized Figure 5) An original concept hierarchy visualization: “The Scroll.”

Figure 28. (Full-sized Figure 8) Medium-zoom view of the concept hierarchy.

Figure 29. (Full-sized Figure 10) The visualization and interaction interface as presented to the user.

14

Figure 30. (Full-sized Figure 12) A filtered selection of hierarchy data showing only direct parents and children of the
Trajectory Approach concept.

Figure 31. (Full-sized Figure 15) Filtered graph showing allocations to and from the Operability concept.

Figure 32. (Full-sized Figure 16) Allocation information associated with the Operability concept. This helps users
understand the particular allocations beyond the network and magnitude presented in the interactive diagram.

15

Figure 33. (Full-sized Figure 19) From this filtered view we can assess how well the constraint allocations to
Operability (Figure 15) match up to the concept hierarchy of CS1.

Figure 34. (Full-sized Figure 24) Table data provided to the user when an individual requirement is selected from the
traceability visualization.

16

ACKNOWLEDGMENTS
The research was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

The authors wish to thank Brian Cooke and Todd Bayer
for the support this work received from the Project and for
their feedback, suggestions, and feature requests. Thanks
also to Alek Kerzhner, David Coren and the whole MSET
Team for hosting the visualizations, for developing the View
Editor integration, for suggestions and for technical input.
Many thanks to Navid Dehghani, Dan Dvorak, Chi Lin and
Dave Nichols for their interest in this work and for providing
opportunities to demonstrate and showcase it.

REFERENCES
[1] T. Bayer, S. Chung, B. Cole, B. Cooke, F. Dekens, C.

Delp, I. Gontijo, and D. Wagner, “Update on the Model
Based Systems Engineering on the Europa Mission Con-
cept Study,” in Proceedings of Aerospace Conference.
Big Sky, Montana: IEEE, 2013

[2] G. Dubos, D. Coren, A. Kerzhner, S. Chung, J. Castet,
“Modeling of the Flight System Design in the Early
Formulation of the Europa Project,” pending publication
in Proceedings of Aerospace Conference. Big Sky, Mon-
tana: IEEE, 2016

[3] M. Jackson, C. L. Delp, D. Bindschadler, M. Sarrel, R.
Wollaeger, and D. Lam, “Dynamic Gate Product and
Artifact Generation from System Models,” in Proceed-
ings of Aerospace Conference. Big Sky, Montana: IEEE,
2011.

[4] Delp, C., Lam, D., Fosse, E., Lee, C., “Model Based Doc-
ument and Report Generation for Systems Engineering,”
IEEE Aerospace Conference, IEEE, New Jersey, 2013,
pp. 1-11.

[5] Open MBEE github repository:
https://github.com/Open-MBEE

[6] B. Rasmussen and B. Muirhead, “A Case for Model-
Based Architecting in NASA,” 2012, unpublished.

[7] M. Jackson, M. Wilkerson, and J. Castet, “Exposing
Hidden Parts of the SE Process: MBSE Patterns and
Tools for Tracking and Traceability,” pending publication
in Proceedings of Aerospace Conference. Big Sky, Mon-
tana: IEEE, 2016

[8] Data driven Documents: http://d3js.org/
[9] D3 Sankey Diagrams: http://bost.ocks.org/mike/sankey/
[10] INCOSE Insight, August 2015, Vol. 18, Issue 2.

BIOGRAPHY[

Maddalena Jackson received a B.S.
in Engineering from Harvey Mudd Col-
lege in 2008 and has been at JPL
working with MBSE since. She has
served on projects both as an SE (us-
ing MBSE) and as a software developer
in many domains, from human explo-
ration to ground systems to cyber de-
fense and now NASA’s Europa Project.
She is primarily a member of the Eu-

ropa Projects’s Flight System Requirements Team, the role
for which she developed the visualizations presented in this
paper. She is also Europa’s Model Systems Engineering
Team Software Management Lead, which oversees software
developed in support of MBSE activities on the project.

Marcus Wilkerson received his B.S.
degree in Aerospace Engineering from
the University of Colorado at Boul-
der in 2008. He is currently the
Flight System Requirements Team lead
for the Europa Project. He previ-
ously served as Integration and Test lead
for OPALS, an optical communications
technology demonstration on the Inter-
national Space Station.

17

